Tag Archive for: blood disorders

Auditorium at the Cell and Gene Therapy in the DMV Symposium

Cell & Gene Therapy in the DMV: Experts collaborate for cures

Leaders in medicine, academia, industry and state and local government came together for the first annual Cell and Gene Therapy in the DMV Symposium, hosted at the Children’s National Research & Innovation Campus. The mission: Connect the local scientific community – bursting with expertise and collaboration potential – to develop these cutting-edge therapies for cancers, sickle cell disease and immune-mediated disorders.

The daylong event drew over 100 experts from a range of organizations in the D.C, Maryland and Virginia region, sometimes called the DMV: Children’s National Hospital, the Food and Drug Administration, the National Institute of Standards and Technology, the National Institutes of Health, the General Accounting Office, Virginia Tech, MaxCyte, AstraZeneca, Kite Pharma, Montgomery College, the Maryland State Department of Commerce and more. Together, they unraveled a host of topics including the regulatory environment, workforce development and training, research standards and the promise of these therapies.

“Our Cell & Gene Therapy Symposium brings together our current collaborators and future partners in the D.C., Maryland and Virginia space, which is an incredibly rich area. We see tremendous opportunity and breakthroughs in our future,” said Catherine Bollard, M.D., M.B.Ch.B., interim chief academic officer and chief of Pediatrics at Children’s National Hospital. “Many different diseases rely on the immune system to either be ramped up or to be controlled, and we can seize on these biological processes. Cell and gene therapies are at the heart of where medicine is going.”

The big picture

For decades, oncologists largely have turned to the same menu of treatments to fight cancer, including surgery, chemotherapy and radiation. Cell and gene therapies offer the promise of training the immune system to fight diseases with fewer side effects and potentially higher success rates. Early work has shown progress in liquid cancers, like leukemia, raising the possibility that the therapies could be used on solid tumors and other disorders, such as lupus and sickle cell disease. However, many disciplines must come together to yield discoveries.

“Nobel Prize-winning work doesn’t necessarily translate into available therapies for patients. It takes a whole community like this to make it happen,” said Cenk Sumen, chief scientific officer at MaxCyte Inc., an international cell engineering company based in Rockville, Md. “It has been exciting to see this diverse group of stakeholders come together, which is probably unmatched anywhere on the planet.”

Why we’re excited

Symposium host Patrick Hanley, Ph.D., chief and director of the Cellular Therapy Program at Children’s National, said the goal was to cement the region as the No. 1 location for this highly technical research and development. He believes Children’s National can offer essential elements to this success, given its clinical and research expertise, workforce training opportunities and geographic proximity to the scientific leadership of the federal government. “What makes us unique is our proximity to all the players who can help create new treatment options for patients. We truly are the biomedical capital of the world,” he said.

Michael Friedlander, vice president for health sciences at Virginia Tech, notes that the earliest stages of invention will emanate from academic labs including those at Virginia Tech and Children’s National. “You have basic scientists who are doing fundamental research on properties and procedures that will lead to the new therapies of tomorrow,” he said. “We are putting in place the fundamental pieces to advance children’s health in all dimensions.”

What’s ahead

One challenge is developing a workforce to help prepare cell therapies for patients, following precise standards to ensure the therapy works as designed. Children’s National does this training, as do others in the region. Lori Kelman, Ph.D., M.B.A., biotechnology coordinator and professor at Montgomery College, said that the area is full of people who want to help people and who like science.

“The thing that people might not know is that you don’t need a Ph.D. to work in cell and gene therapy,” she said. “There are opportunities at all levels, including the entry level, which is where a great career often starts.”

First-of-its-kind holistic program for managing pain in sickle cell disease

The new sickle cell clinic prioritizes looking at the whole person and considering multiple factors that promote health.

The sickle cell team at Children’s National Hospital received a grant from the Founders Auxiliary Board to launch a first-of-its-kind, personalized holistic transformative program for the management of pain in sickle cell disease (SCD). The clinic uses an inter-disciplinary approach of hematology, psychology, psychiatry, anesthesiology/pain medicine, acupuncture, mindfulness, relaxation and aromatherapy services.

Focusing on the “whole person health,” this clinic prioritizes looking at the whole person — not as individual organs or body systems — and considering multiple factors that promote health. Strategies taught in the clinic allow patients to manage their pain effectively by improving self-efficacy, coping mechanisms, and encouraging use of non-opioid and non-pharmacological modalities for pain management. Below, Deepika Darbari, M.D., hematologist and lead of the clinic, and Andrew Campbell, M.D., director of the Comprehensive Sickle Cell Disease Program, tell us more about this unique clinic.

Q: What’s been the hold-up in the field to implement a clinic like this?

A: There are many barriers at different levels in establishing a clinic like this. Most commonly it is the lack of provider expertise, which may not be available at many institutions. Furthermore, services may be available but may not be covered by health insurance. Sometimes, access to these services may be difficult because of the limited locations where they may be offered and not in conjunction with a patient’s hematology care – like in our clinic – which adds to the burden for patients and their families.

Q: How does this work move the field forward in the space of SCD?

A: This clinic is a unique concept where patients and their families actively contribute to and are at the center of the management plan. The goal of this clinic is to provide holistic care to our patients and families and positively impact all aspects of their wellbeing.

Instead of treating a specific disease, “whole person health” focuses on restoring health, promoting resilience and preventing diseases across the patient’s lifespan.

This clinic will continue to provide traditional treatment options for management of SCD along with non-opioids and nonpharmacologic therapies for management of pain, which is the most common complication of SCD.

We are not aware of any such multidisciplinary clinic for SCD like ours at Children’s National. Our team has been invited to national and international scientific conferences to share our experience and educate other programs about how to establish and sustain a clinic like ours.

Q: How will this clinic benefit patients?

A: In SCD, the symptom of pain can start as early as in the first 6 months of life and continue to occur through the lifespan of a patient, often turning into a chronic pain condition. This chronic pain is very refractory to traditional treatments including strong medications like opioids, which may not provide relief while contributing to many side effects. Our goal for patients attending this clinic is to improve their pain experience without increasing side effects.

We hope that the approach offered in this clinic will allow us to decrease the incidence and burden of chronic pain in individuals living with SCD. We would like to offer these treatment strategies early in life, which may help reduce the burden of chronic pain in our patients. We also hope that patients who have developed chronic pain can utilize these strategies to manage their pain, enhance function, reduce opioid use and improve health-related quality of life.

Q: What are you most excited about?

A: We are very excited to build upon our previous work in this space. Our pilot program was started by members of our multidisciplinary team who volunteered their time and effort for this important work.

While providing care to our families and patients, we are also looking forward to collecting robust data that can demonstrate the impact of such an approach in reducing burden of pain in SCD. This data will be helpful in supporting future research and expansion of this approach to benefit all individuals living with SCD.

 

Sickle-Cell-Blood-Cells

Children’s National joins ASH RC Sickle Cell Disease Clinical Trials Network

Sickle-Cell-Blood-Cells

The American Society of Hematology Research Collaborative (ASH RC) has announced the first 10 clinical research consortia to join the ASH RC Sickle Cell Disease Clinical Trials Network. Children’s National Hospital will be one of the clinical trials units to serve in the DMV Sickle Cell Disease Consortium (DMVSCDC).

The sites will be able to enroll children and adults living with sickle cell disease (SCD) within their patient populations in clinical trials as part of an unprecedented national effort to streamline operations and facilitate data sharing to expedite the development of new treatments for this disease.

“As part of the ASH RC SCD clinical trials network, we will learn regionally and nationally how sickle cell patients respond differently to therapies, hopefully giving us clues to provide more successful targeted and individualized treatments that will improve the morbidity and mortality in sickle cell disease patients,” said Andrew Campbell, M.D., director of Comprehensive Sickle Cell Disease Program at Children’s National.

SCD is a chronic, progressive, life-threatening, inherited blood disorder that affects more than 100,000 Americans and an estimated 100 million persons worldwide. Clinical trials hold incredible promise for the development of much-needed new treatments, and possibly even a cure. While there are currently only four U.S. Food and Drug Administration (FDA)-approved drugs to treat the disease, there is a robust SCD drug development pipeline that will drive demand for clinical trials to a new level, providing a prime opportunity to advance treatment and care of those affected by SCD.

“We are proud that the DMV Sickle Cell Disease Consortium will contribute regionally, allowing our patients and families to benefit from new clinical trials investigating new therapies that may improve the clinical course and quality of life of patients living with sickle cell disease in the DMV region,” Dr. Campbell added. “We will also have an integrated Community Advisory Board who will continue to provide guidance and expertise for our consortium including patients, families and caregivers.”

Read the full list of other hospitals joining the network.

blood cells with sickle cell anemia

Advances in therapy for sickle cell disease and hemophilia

blood cells with sickle cell anemia

Despite having a network of providers and a national database, access to care and treatment burden continue to be issues that affect quality of life in the hemophilia population.

Hemophilia and sickle cell are disorders that are associated with comorbidities and significant treatment burden, discussed Christine Guelcher, PPCNP-BC, lead advanced practice provider for the Center for Cancer and Blood Disorders at Children’s National Hospital, during the virtual 62nd ASH Annual Meeting and Exposition.

During the satellite symposia, Guelcher explained a network of hemophilia treatment centers (HTCs) was developed in the 1970s. The model of multi-disciplinary care in the HTC network has demonstrated improved outcomes. Despite having a network of providers and a national database, access to care and treatment burden continue to be issues that affect quality of life in the hemophilia population.

“While similar programs were developed in sickle cell with similar improvements in care, the funding was not sustained,” Guelcher said. However, efforts are underway to develop multi-disciplinary care and data infrastructure in the sickle cell community.

“The lack of specialized providers, particularly adult hematologists, continues to be an issue for both non-malignant hematologic disorders,” she added.

Advances in care

While hemophilia is rare, it is an expensive disease. Controlling bleeding with medications is expensive and associated with significant treatment burden. Failure to prevent bleeding due to lack of access or adherence can result in debilitating bleeding that impacts on productivity and quality of life. Additionally, clinical trials with gene therapy are ongoing, though questions remain about sustained levels and durability.

“Recent development of drugs that can reduce the frequency of intravenous infusions (extended half-life factor replacement products or subcutaneous novel non-factor prophylaxis) have improved the treatment burden,” Guelcher said. “But access to care continues to be an issue for up to 30% of the patients with bleeding disorders in the U.S.” Sickle cell disease affects mostly Black/African American and Hispanic patients, many of whom already experience health care disparities. While newborn screening, antibiotic prophylaxis and immunizations have decreased life-threatening infections, vaso-occlusive (pain) crisis continues to be a debilitating complication. Furthermore, stroke, pulmonary, cardiac and renal disease are significant comorbidities.

While advances in therapies for sickle cell have provided new treatment options to decrease the frequency of vaso-occlusive crisis, the pathophysiology that results in all of the sequalae is not fully understood. While Bone marrow transplant is potential treatment of the underlying sickle cell disease process, only 20% of patients have a matched sibling donor. Currently, clinical trials are investigating the safety and efficacy of gene therapy. Despite all of these advances, the life expectancy of somebody with sickle cell is 30 years shorter than the general U.S. population.

Access to care

The multi-disciplinary panel presentation at ASH gave participants an opportunity to hear about the challenges facing these patients and families. The overview of new and emerging treatment options gave providers an understanding of treatment options.

“Hopefully, presentations like this will inspire providers to consider a career in non-malignant hematology (particularly adult providers),” Guelcher added.

As one of the nation’s hemophilia and thrombosis treatment centers, Children’s National Hospital provides comprehensive, multi-disciplinary care. Patients can participate in two national registries in order to collect aggregate data that are used to identify trends that impact bleeding disorder patients. Our sickle cell program also offers multi-disciplinary clinics for infants, integrative care for chronic pain and transition, addressing some of the unmet needs that continue to be an issue nationally.

“We also participate in industry sponsored clinical trials to ensure that new therapies, including gene therapy, are safe and effective,” Guelcher explained. “This gives our patients access to state-of-the-art care. Numerous clinical trials to ensure that recently licensed products and gene therapy are safe for use in a pediatric patient with hemophilia and sickle cell are ongoing.”

Suvankar Majumdar

Spotlight on Suvankar Majumdar, M.D.

Suvankar Majumdar

As a provider with international experience, Suvankar Majumdar, M.D., joined Children’s National in August 2017 as chief of Children’s Division of Hematology within the Center for Cancer and Blood Disorders. Dr. Majumdar is excited to be at Children’s National because of the opportunities for growth, cutting-edge research and continuing education that our diverse population of patients can provide clinicians.

Born in Zambia, in southern Africa, and educated in the United Kingdom, Dr. Majumdar moved to Zimbabwe to study medicine, which he considers the turning point of his career. While in medical school, Dr. Majumdar oversaw and managed the treatment of patients with HIV and other chronic illnesses and determined that blood disorders, particularly sickle cell, was where he wanted to place his focus. Since then, he has served as the Director of the Comprehensive Pediatric Sickle Cell Program as well as Director of the Hemophilia Treatment Center at the University of Mississippi and is a recognized leader in hematology and sickle cell disease. It is this expertise, as well as his dedication to research studies, that have already made him an asset to Children’s National.

Within the Division of Hematology, Children’s providers focus on treating patients with blood disorders, bleeding and clotting disorders, red blood cell disorders (such as sickle cell) and more. Since coming to Children’s National, Dr. Majumdar has experienced a tremendous amount of dedication and enthusiasm from his colleagues. “I’m excited to build on what our faculty has accomplished so far. We’re already well poised to become a national leader in hematology,” he says. “I have no doubt that we will continue to accomplish our goals through collaboration and working toward a common life-saving cause.”

One of his immediate goals for the division is to focus on bringing improved patient care and accessibility in the surrounding Washington area. Additionally, Dr. Majumdar is currently conducting two research studies for sickle cell disease. As one of his studies enters the second phase, he’s focused on seeing the impact of an intravenous citrulline, a nitric oxide booster, on patients with sickle cell disease. Another study has begun to determine if specific genetic mutations that cause prolonged QT, or irregular heartbeats in patients, cause mortality, as sickle cell patients are predisposed to cardiac episodes.

It is Dr. Majumdar’s hope that the hematology team at Children’s National will also continue training the next generation of providers to advance research, education and clinical aspects of the field. To those looking to join the specialty, Dr. Majumdar suggests keeping an open mind when it comes to collaborating with colleagues. “My dad always said to my siblings and I that ‘to break one stick is easy, but to break three sticks is harder’ and really impressed upon us that we’re stronger together,” he says. “By working together, we’re more likely to produce the results that we’re looking for.”

Being located in the nation’s capital, providers at Children’s National are accustomed to seeing a diverse array of patients. For Dr. Majumdar, this presents a unique opportunity. “Meeting and interacting with different patients and families was really appealing when I decided to come to Children’s National. The variety of cases we see in the Division of Hematology can definitely present new challenges, but it’s also more rewarding,” he says.

Working with the pediatric population is also a passion of his. “Children are resilient and tend to bounce back quickly,” Dr. Majumdar says. “As a parent, I try to empathize with treatment concerns and always treat every child as if they were my own. I’m always going to make sure it’s the best level of care possible.”

germ cells in testicular tissues

Experimental fertility preservation provides hope for young men

germ cells in testicular tissues

Confirming the presence of germ cells in testicular tissues obtained from patients. Undifferentiated embryonic cell transcription factor 1 (UTF1) is an established marker of undifferentiated spermatogonia as well as the pan-germ cell marker DEAD-box helicase 4 (DDX4). UTF1 (green) and/or DDX4 (red) immunostaining was confirmed in 132 out of 137 patient tissues available for research, including patients who had received previous non-alkylating (B, E, H, K) or alkylating (C, F, I, L) chemotherapy treatment. © The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

Testicular tissue samples obtained from 189 males who were facing procedures that could imperil fertility were cryopreserved at one university, proving the feasibility of centralized processing and freezing of testicular tissue obtained from academic medical centers, including Children’s National, scattered around the world.

“It’s not surprising that the University of Pittsburgh would record the highest number of samples over the eight-year period (51 patients), given its role as the central processing facility for our recruiting network of academic medical centers,” says Michael Hsieh, M.D., Ph.D., director of transitional urology at Children’s National. “Children’s National recruited the third-highest number of patients, which really speaks to the level of collaboration I have with Jeff Dome’s team and their commitment to thinking about the whole patient and longer-term issues like fertility.”

An estimated 2,000 U.S. boys and young men each year receive treatments or have cancers or blood disorders that place them at risk for infertility. While older youths who have undergone puberty can bank their sperm prior to undergoing sterilizing doses of chemotherapy or radiation, there have been scant fertility preservation options for younger boys. However, some older adolescents and young men are too sick or stressed to bank sperm. For patients with no sperm to bank or who are too sick or stressed to bank sperm, the experimental procedure of freezing testicular tissue in anticipation that future cell- or tissue-based therapies can generate sperm is the only option.

Recent research in experimental models indicates that such testicular tissue biopsies contain stem cells, blank slate cells, hinting at the potential of generating sperm from biopsied tissue.

“This study demonstrates that undifferentiated stem and progenitor spermatogonia may be recovered from the testicular tissues of patients who are in the early stages of their treatment and have not yet received an ablative dose of therapy. The function of these spermatogonia was not tested,” writes lead author Hanna Valli-Pulaski, Ph.D., research assistant professor at the University of Pittsburgh, and colleagues in a study published online May 21, 2019, in Human Reproduction.

Right now, hematologists and oncologists discuss future treatment options with patients and families, as well as possible long-term side effects, including infertility. At Children’s National, they also mention the ongoing fertility preservation study and encourage families to speak with Dr. Hsieh. He meets with families, explains the study goals – which include determining better ways to freeze and thaw tissue and separating malignant cells from normal cells – what’s known about experimental fertility preservation and what remains unknown. Roughly half of patients decide to enroll.

“This study is unique in that there is definitely a potential direct patient benefit,” Dr. Hsieh adds. “One of the reasons the study is compelling is that it presents a message of hope to the families. It’s a message of survivorship: We’re optimistic we can help your child get through this and think about long-term issues, like having their own families.”

In this phase of the study, testicular tissue was collected from centers in the U.S. and Israel from January 2011 to November 2018 and cryopreserved. Patients designated 25% of the tissue sample to be used for the research study; 75 percent remains stored in liquid nitrogen at temperatures close to absolute zero for the patient’s future use. The fertility preservation patients ranged from 5 months old to 34 years old, with an average age of 7.9 years.

Thirty-nine percent of patients had started medical treatment prior requesting fertility preservation. Sixteen percent received non-alkylating chemotherapy while 23% received alkylating chemotherapy, which directly damages the DNA of cancer cells.

The research team found that the number of undifferentiated spermatogonia per seminiferous tubule increase steadily with age until about age 11, then rise sharply.

“We recommend that all patients be counseled and referred for fertility preservation before beginning medical treatments known to cause infertility. Because the decision to participate may be delayed, it is encouraging that we were able to recover undifferentiated spermatogonia from the testes of patients already in the early stages of chemotherapy treatments,” Dr. Hsieh says.

In addition to Dr. Hsieh, study co-authors include lead author, H. Valli-Pulaski, K.A. Peters, K. Gassei, S.R. Steimer, M. Sukhwani, B.P. Hermann, L. Dwomor, S. David, A.P. Fayomi, S.K. Munyoki, T. Chu, R. Chaudhry, G.M. Cannon, P.J. Fox, T.M. Jaffe, J.S. Sanfilippo, M.N. Menke and senior author, K.E. Orwig, all of University of Pittsburgh; E. Lunenfeld, M. Abofoul-Azab and M. Huleihel, Ben-Gurion University of the Negev; L.S. Sender, J. Messina and L.M. Klimpel, CHOC Children’s Hospital;  Y. Gosiengfiao, and E.E. Rowell, Ann & Robert H. Lurie Children’s Hospital of Chicago; C.F. Granberg, Mayo Clinic; P.P. Reddy, Cincinnati Children’s Hospital Medical Center; and J.I. Sandlow, Medical College of Wisconsin.

Financial support for the research covered in this post was provided by Eunice Kennedy Shriver National Institute for Child Health and Human Development under awards HD061289 and HD092084; Scaife Foundation; Richard King Mellon Foundation; University of Pittsburgh Medical Center; United States-Israel Binational Science Foundation and Kahn Foundation.

little girl with cancer

New approach improves pediatric kidney cancer outcomes

little girl with cancerWilms tumor, also known as nephroblastoma, is the most common pediatric kidney cancer, typically seen in children ages three to four. Compared to patients with unilateral Wilms tumors, children with bilateral Wilms tumors (BWT) have poorer event-free survival (EFS) and are at higher risk for later effects such as renal failure. The treatment of BWT is challenging because it involves surgical removal of the cancer, while preserving as much healthy kidney tissue as possible to avoid the need for an organ transplant.

A new Children’s Oncology Group (COG) study published in the September issue of the Annals of Surgery demonstrated an exciting new approach to treating children diagnosed with BWT that significantly improved EFS and overall survival (OS) rates after four years when compared to historical rates. Jeffrey Dome, M.D., Ph.D., Vice President of the Center for Cancer and Blood Disorders at Children’s National Health System, was co-senior author of this first-ever, multi-institutional prospective study of children with BWT.

Historically, patients with BWT have had poor outcomes, especially if they have tumors with unfavorable histology. In this study, Dr. Dome and 18 other clinical researchers followed a new treatment approach consisting of three chemotherapy drugs before surgery rather than the standard two drug regimen, surgical removal of cancerous tissue within 12 weeks of diagnosis, and postoperative chemotherapy that was adjusted based on histology.

The study found that preoperative chemotherapy expedited surgical treatment, with 84 percent of patients having surgery within 12 weeks of diagnosis. The new treatment approach also vastly improved EFS and OS rates for patients participating in the study. The four-year EFS rate was 82.1 percent, compared to 56 percent on the predecessor National Wilms Tumor Study-5 (NWTS-5) study. The four-year OS rate was 94.9 percent, compared to 80.8 percent on NWTS-5.

“I am very encouraged by these results, which I believe will serve as a benchmark for future studies and lead to additional treatment improvements, giving more children the chance to overcome this diagnosis while sparing kidney tissue,” says Dr. Dome.

A total of 189 patients at children’s hospitals, universities and cancer centers in the United States and Canada participated in this study. These patients will continue to be followed for 10 years to track kidney failure rates. This study was funded by grants from the National Institutes of Health to the Children’s Oncology Group.