Tag Archive for: blood disorder

blood cells

Half-matched cells – not identical – can help patients live longer, study finds

blood cells

Severe aplastic anemia (SAA) is a rare but serious blood disorder. Children and adults with SAA get very sick with low blood counts, infections or bleeding.

A new study, published in The Lancet Haematology, finds that patients of all races and ethnicities can get successful transplants for severe aplastic anemia (SAA) through haploidentical, or half-matched, bone marrow transplantation (BMT).

The big picture

SAA is a rare but serious blood disorder. Children and adults with SAA get very sick with low blood counts, infections or bleeding.

Relapsed SAA is a marrow failure disorder with high morbidity and mortality. Although this is often treated with BMT at relapse post-immunosuppressive therapy, historically under-represented minorities often struggle finding a suitably matched donor.

“If SAA does not respond to the first choice of therapy or comes back after a period of health, then we call this relapsed and refractory SAA,” says Blachy J. Dávila Saldaña, M.D., Blood and Marrow Transplant Specialist at Children’s National Hospital and corresponding author of the study. “BMT is the only cure for relapsed and refractory SAA.”

Moving the field forward

Many diagnosed patients do not have a fully matched donor to have a successful BMT. However, the study’s findings show that a haploidentical BMT from a family member can help people live longer.

“This especially helps people who are American Indian or Alaska native, Asian, Black or African American, Native Hawaiian, other Pacific Islander, more than one race or Hispanic,” Dr. Dávila adds. “It’s easier for people in these communities to find a related half-matched than a fully matched unrelated BMT donor.”

The patient benefit

Haploidentical BMT will greatly expand the ability of experts to safely treat patients of non-Caucasian ancestry that suffer from this condition.

“The half-matched transplant is becoming more standard and as safe as those with a fully matched donor,” Dr. Dávila says.

Children’s National was one of a handful of pediatric hospitals in the United States to participate in this open trial. Our experts will now provide the framework to expand these services to pediatric patients across the world.

stem cells

How our BMT program is excelling: Q&A with David Jacobsohn, M.D.

David Jacobsohn

Dr. Jacobsohn has led the BMT program at Children’s National as the division chief and talks about their incredible success over the last 5 years.

Over the last five years, the bone marrow transplant (BMT) program at Children’s National Hospital has continuously improved. From decreasing transplant-related mortality to 0%, to increasing the complexity of their transplants, the program continues to succeed in providing the best care to patients and their families.

David Jacobsohn, M.D., Blood and Marrow Transplantation division chief, offers insight on the goals the program has reached, the obstacles it has overcome and the vision for what’s next.

Q: How would you describe the success of the BMT program over the last 5 years?

A: We have progressively seen outcomes improve, marked by improvement in one-year overall survival of allogeneic transplants. Contributing to that is our outstanding day 100 transplant-related mortality (TRM). For the first time ever, the day 100 transplant-related mortality, averaged over allogeneic transplants done in the last 3 years, was 0%. That means that during that time, we have not lost a patient due to transplant complications in the first 100 days. This is a remarkable achievement in the world of transplantation.

Q: How does this work move the field forward?

A: We are particularly interested in continuing BMT in non-malignant conditions, such as beta-thalassemia, immunodeficiency and sickle cell anemia. We have one of the largest programs in the country for transplantation of patients with sickle cell anemia. We have been able to offer BMT to patients with sickle cell disease (SCD) and no prior complications, as a preventative procedure. Whereas in the past, it was mostly reserved for patients that had already been severely affected.

Q: How will this work benefit patients?

A: One of the key benefits that we’re seeing is that complications such as graft-versus-host disease (GVHD) have really decreased over the last few years based on the type of medications we’re using and procedures we’re doing.  Now most of our patients that are about six months out from transplant are off immunosuppression and are living relatively normal lives.

Q: What excites you most about this advancement?

A: We’re very excited about something called the Alpha/beta T cell depletion (A/B TCD) . We’re one of the few hospitals in the country offering this process.

This means we’re able to collect the donor stem cells and remove the T cells in the lab. Particularly the A/B T cells, which cause GVHD. We’re able to do this successfully not needing any medications to suppress the immune system. This is really quite novel. A lot of those medications have different side effects on organs, especially the kidneys. Now we can do transplants, even from half-matched donors, without immunosuppression.

We want to expand to more and more patients in the next three to five years so that no patients will need immunosuppression.

Q: What do you look forward to in the next couple of years?

A: In the next few years, we’re excited to venture more into cellular and gene therapy. With regards to cellular therapy, we’re offering something called CAR T cells to patients with acute leukemia. And it’s possible that this will actually replace transplant in some very high-risk leukemia patients.

We’re also looking forward to offering gene therapy to patient with SCD and beta-thalassemia.

Allistair Abraham

Q&A with leading blood and marrow transplantation specialist

Allistair Abraham

Children’s National Health System is proud to be the home of some of the world’s leading hematology experts, including Allistair Abraham, M.D., blood and marrow transplantation specialist within the Center for Cancer and Blood Disorders, who was recently selected to participate in the American Society of Hematology-Harold Amos Medical Faculty Development Program (ASH-AMFDP). Designed to increase the number of underrepresented minority scholars in the field of hematology, the ASH-AMFDP has awarded Dr. Abraham $420,000 that includes an annual stipend and research grant over the next four years. Here, Dr. Abraham tells us more about his research and what it means for the future of patients with sickle cell disease.

Q: What does this award mean to you?
A: This award comes at a critical time in my early career as I learn how to become an independent grant-funded researcher. It gives me an opportunity to dedicate 70 percent of my time to research for the next four years, during which I will hone my research skills and have access to highly accomplished mentors at Children’s National and from the ASH-AMFDP faculty.

Q: Your research for this grant focuses on improving curative hematopoietic stem cell transplantation for sickle cell disease. Why do they need to be improved?

A: Sickle cell disease causes significant health problems for children, which can worsen as they become adults, and even shorten their lifespan. Curative therapies to date are limited for many patients since most do not have a suitably matched donor for a curative bone marrow transplant. Many of us in the field hope we can provide a safe option for as many patients as possible so they can be cured in childhood and not have to face the negative impacts of the disease as they grow older.

Q: You will also be evaluating virus-specific T-cell (VST) recovery after transplantation. What will this mean for patients?

A: As we explore more transplant donor options such as unrelated donors and mismatched family donors, we have observed delayed immune system recovery. Viral infections are particularly problematic, as they can be life-threatening and respond poorly to available medications. Ultimately, a recovered immune system would address the infection problem. We hope to generate immune cells that are protective against viruses from the transplant donor and give them to patients as part of their transplant procedure.

Q: How do you envision your research improving the future of treatment for sickle cell patients?

A: My hope is that we get closer to having a safer transplant option for most patients who, despite optimal therapy, continue to suffer from complications of sickle cell disease. Ideally, these transplants would not only be widely available, but the treatment would also be simplified to the point where most of the therapy could take place in an outpatient setting.

Q:  Why did you decide to work in this field?

A:  Sickle cell disease has lagged behind other disorders in terms of new treatment strategies for quite some time. I experienced this as a medical trainee and struggled when parents would ask me to “do something” for their child when most of the time all I could offer was pain medication. In the last five years or so, there has been more focus on sickle cell disease from the field and the community, so now is the time to work toward developing a widely available cure.

American Society of Hematology logo

Leading blood disorder experts from Children’s National convene in Atlanta for 59th American Society of Hematology annual meeting

In early December 2017, more than 25,000 attendees from around the world, including several experts from Children’s National Health System, convened in Atlanta for the American Society of Hematology’s annual meeting and exposition, the world’s premiere hematology event. For four days, physicians, nurses and other healthcare professionals attended sessions, listened to speakers and collaborated with each other, focusing on enhancing care and treatment options for patients with blood disorders and complications, including leukemia, sickle cell disease and transplants.

As nationally recognized leaders in the field, the Children’s National team led educational sessions and gave keynote speeches highlighting groundbreaking work underway at the hospital, which sparked engaging and productive conversations among attendees. Highlights from the team include:

  • Catherine Bollard, M.D., M.B.Ch.B., Director of the Center for Cancer and Immunology Research, educating global experts on cellular immunotherapy for non-Hodgkin lymphoma.
  • Kirsten Williams, M.D., bone and marrow transplant specialist, presenting novel work utilizing TAA-specific T cells for hematologic malignancies with Dr. Bollard, the sponsor of this first-in-man immunotherapy; moderating sessions on immunotherapy and late complications and survivorship after hematopoietic stem cell transplantation (HSCT).
  • Allistair Abraham, M.D., blood and marrow transplantation specialist, moderating a session on hemoglobinopathies.
  • David Jacobsohn, M.D., ScM, Division Chief of Blood and Marrow Transplantation, moderating a session on allogeneic transplantation results.
  • Naomi Luban, M.D., hematologist and laboratory medicine specialist, introducing a plenary speaker on the application of CRISPR/Cas 9 technology for development of diagnostic reagents for diagnosis of alloimmunization from stem cells.

Additional presentations from the Children’s National team included an oral abstract on the hospital’s work to improve hydroxyurea treatment for sickle cell disease by pediatric resident Sarah Kappa, M.D., who also received an ASH Abstract Achievement Award; another key session on hemoglobinopathies moderated by Andrew Campbell, M.D., director of the Comprehensive Sickle Cell Disease Program; an abstract on the clinical use of CMV- specific T-cells derived from CMV-native donors, presented by Patrick Hanley, Ph.D.; a leukemia study presented by Anne Angiolillo, M.D., oncologist; and a presentation about pain measurement tools in sickle cell disease by Deepika Darbari, M.D., hematologist.