Posts

Craig Sable

Can a vaccine prevent the earliest forms of rheumatic heart disease?

Craig Sable

Craig Sable, M.D., associate chief of the division of cardiology and director of echocardiography at Children’s National Health System, earned a lifetime achievement award, formally known as the 2018 Cardiovascular Disease in the Young (CVDY) Meritorious Achievement Award, on Nov. 10 at the American Heart Association’s Scientific Sessions 2018.

The CVDY Council bestows the prestigious award to individuals making a significant impact in the field of cardiovascular disease in the young. The CVDY Council supports the mission to improve the health of children and adults with congenital heart disease and acquired heart disease during childhood through research, education, prevention and advocacy.

Dr. Sable is recognized for his entire body of research, education and advocacy focused on congenital and acquired heart disease, but especially for his rheumatic heart disease (RHD) research in Uganda.

Over the past 15 years, Dr. Sable has brought more than 100 doctors and medical staff to Kampala, the capital and largest city in Uganda, partnering with more than 100 local doctors and clinicians to develop a template for a sustainable infrastructure to diagnose, treat and prevent both RHD and congenital heart disease.

RHD is a result of damage to the heart valves after acute rheumatic fever (ARF). The process starts with a sore throat from streptococcal infection, which many children in the United States treat with antibiotics.

“For patients who develop strep throat, their body’s reaction to the strep throat, in addition to resolving its primary symptoms, can result in attacking the heart,” says Dr. Sable. “The initial damage is called acute rheumatic fever. In many cases this disease is self-limited, but if undetected, over years, it can lead to long-term heart valve damage called rheumatic heart disease. Unfortunately, once severe RHD develops the only treatment is open-heart surgery.”

In 2017, Sable and the researchers published a study in the New England Journal of Medicine about the global burden of RHD, which is often referred to as a disease of poverty.

RHD is observed more frequently in low- and middle-income countries as well as in marginalized communities in high-income countries. RHD has declined on a global scale, but it remains the most significant cause of morbidity and mortality from heart disease in children and young adults throughout the world.

In 2017 there were 39.4 million causes of RHD, which resulted in 285,000 deaths and 9.4 million disability-adjusted life-years.

In 2018 the World Health Organization issued a referendum recognizing rheumatic heart disease as an important disease that member states and ministries of health need to prioritize in their public health efforts.

The common denominator that drives Dr. Sable and the global researchers, many of whom have received grants from the American Heart Association to study RHD, is the impact that creating a scalable solution, such as widespread adoption of vaccines, can have on entire communities.

“The cost of an open-heart surgery in Uganda is $5,000 to $10,000, while treatment for a child with penicillin for one year costs less than $1,” says Dr. Sable. “Investment in prevention strategies holds the best promise on a large scale to eradicate rheumatic heart disease.”

Sable and the team have screened more than 100,000 children and are conducting the first randomized controlled RHD trial, enrolling nearly 1,000 children, to examine the effectiveness of using penicillin to prevent progression of latent or subclinical heart disease, the earliest form of RHD.

During the Thanksgiving holiday weekend, Dr. Sable and a team of surgeons will fly back to Uganda to operate on children affected by RHD, while also advancing their research efforts to produce a scalable solution, exported on a global scale, to prevent RHD in its earliest stages.

Dr. Sable and colleagues from around the world partner on several grant-funded research projects. Over the next few years, the team hopes to answer several important questions, including: Does penicillin prevent the earliest form of RHD and can we develop a vaccine to prevent RHD?

To view the team’s previously-published research, visit Sable’s PubMed profile.

To learn about global health initiatives led by researchers at Children’s National, visit www.GHICN.org.

Charles Berul and Rohan Kumthekar demonstrate tiny pacemaker

A new prototype for tiny pacemakers, faster surgery

Charles Berul and Rohan Kumthekar demonstrate tiny pacemaker

Charles Berul, M.D., chief of cardiology at Children’s National, and Rohan Kumthekar, M.D., a cardiology fellow working in Dr. Berul’s bioengineering lab at the Sheikh Zayed Institute for Pediatric Surgical Innovation, explore ways to make surgical procedures for infants and children less invasive.

Rohan Kumthekar, M.D., a cardiology fellow working in Dr. Charles Berul’s bioengineering lab at the Sheikh Zayed Institute for Pediatric Surgical Innovation, part of Children’s National Health System, presented a prototype for a miniature pacemaker at the American Heart Association’s Scientific Sessions 2018  on Sunday, Nov. 11. The prototype, approximately 1 cc, the size of an almond, is designed to make pacemaker procedures for infants less invasive, less painful and more efficient, measured by shorter surgeries, faster recovery times and reduced medical costs.

Kumthekar, a Cardiovascular Disease in the Young Travel Award recipient, delivered his oral abstract, entitled “Minimally Invasive Percutaneous Epicardial Placement of a Custom Miniature Pacemaker with Leadlet under Direct Visualization,” as part of the Top Translational Science Abstracts in Pediatric Cardiology session.

“As cardiologists and pediatric surgeons, our goal is to put a child’s health and comfort first,” says Kumthekar. “Advancements in surgical fields are tending toward procedures that are less and less invasive. There are many laparoscopic surgeries in adults and children that used to be open surgeries, such as appendix and gall bladder removals. However, placing pacemaker leads on infants’ hearts has always been an open surgery. We are trying to bring those surgical advances into our field of pediatric cardiology to benefit our patients.”

Instead of using open-chest surgery, the current standard for implanting pacemakers in children, doctors could implant the tiny pacemakers by making a relatively tiny 1-cm incision just below the ribcage.

“The advantage is that the entire surgery is contained within a tiny 1-cm incision, which is what we find groundbreaking,” says Kumthekar.

With the help of a patented two-channel, self-anchoring access port previously developed by Berul’ s research group, the operator can insert a camera into the chest to directly visualize the entire procedure. They can then insert a sheath (narrow tube) through the second channel to access the pericardial sac, the plastic-like cover around the heart. The leadlet, the short extension of the miniature pacemaker, can be affixed onto the surface of the heart under direct visualization. The final step is to insert the pacemaker into the incision and close the skin, leaving a tiny scar instead of two large suture lines.

The median time from incision to implantation in this thoracoscopic surgery study was 21 minutes, and the entire procedure took less than an hour on average. In contrast, pediatric open-heart surgery could take up to several hours, depending on the child’s medical complexities.

“Placing a pacemaker in a small child is different than operating on an adult, due to their small chest cavity and narrow blood vessels,” says Kumthekar. “By eliminating the need to cut through the sternum or the ribs and fully open the chest to implant a pacemaker, the current model, we can cut down on surgical time and help alleviate pain.”

The miniature pacemakers and surgical approach may also work well for adult patients with limited vascular access, such as those born with congenital heart disease, or for patients who have had open-heart surgery or multiple previous cardiovascular procedures.

The miniature pacemakers passed a proof-of-concept simulation and the experimental model is now ready for a second phase of testing, which will analyze how the tailored devices hold up over time, prior to clinical testing and availability for infants.

“The concept of inserting a pacemaker with a 1-cm incision in less than an hour demonstrates the power of working with multidisciplinary research teams to quickly solve complex clinical challenges,” says Charles Berul, M.D., a guiding study author, electrophysiologist and the chief of cardiology at Children’s National.

Berul’s team from Children’s National collaborated with Medtronic PLC, developers of the first implantable pacemakers, to develop the prototype and provide resources and technical support to test the minimally-invasive surgery.

The National Institutes of Health provided a grant to Berul’s research team to develop the PeriPath, the all-in-one 1-cm access port, which cut down on the number of incisions by enabling the camera, needle, leadlet and pacemaker to be inserted into one port, through one tiny incision.

Other study authors listed on the abstract presented at Scientific Sessions 2018 include Justin Opfermann, M.S., Paige Mass, B.S., Jeffrey P. Moak, M.D., and Elizabeth Sherwin, M.D., from Children’s National, and Mark Marshall, M.S., and Teri Whitman, Ph.D., from Medtronic PLC.

Angioletta Rheumatic Heart Disease

Rheumatic Heart Disease Center Launches with $3.7 Million AHA Grant

Angioletta Rheumatic Heart Disease

Ten-year-old Angioletta was clinically diagnosed with rheumatic heart disease in 2014 (severe leakage of her mitral valve). She’s been medically managed at the clinic Children’s helps support and conducts research at in Gulu, and she is a very active participant in the support group led by Children’s National research assistant, Amy Scheel. Angioletta hasn’t had any major complications, but her only hope for long-term survival is to undergo open heart surgery to replace her abnormal valve. Experts are looking towards the research from the new Center to help prevent future generations of children like Angioletta from developing RHD.

Known as the ‘world’s forgotten disease,’ Rheumatic Heart Disease (RHD) is caused by untreated streptococcal throat infections that progress into acute rheumatic fever (ARF) and eventually weaken the valves of the heart. It is the most common cardiovascular disease in children and young adults globally – affecting nearly 33 million people and causing 345,000 deaths annually – yet, it is preventable with early detection and access to penicillin.

To help end the epidemic, Children’s National Health System has been awarded a $3.7 million grant from the American Heart Association (AHA) to launch a Rheumatic Heart Disease Center, with the goal of developing innovative strategies and economic incentives to improve the prevention and diagnosis of RHD in high-risk, financially disadvantaged countries and low-income communities across the United States.

Children’s National is one of four centers in the AHA’s Strategically Focused Children’s Research Network, which is dedicated to improving children’s heart health and reducing the global burden of cardiovascular disease and stroke. AHA selected Children’s for the grant based on its proven record of global collaboration to solve complex health issues and the potential impact of this research. The program will use Children’s robust telemedicine infrastructure to connect co-collaborators around the world, as well as train the next generation of globally minded cardiovascular researchers.

“While it’s often thought that we’ve already beaten rheumatic heart disease, data shows there’s nearly no decrease in mortality rates in low-income countries. The disease is endemic in Sub-Saharan Africa, and some poverty-stricken communities in the U.S. are hit nearly as hard,” said Craig Sable, M.D., associate division chief of cardiology. “We are thrilled to receive this funding from the AHA, which will help us close the research gap for this neglected disease and change the plight of millions of children around the world.”

About the center and research focus areas

Over the next four years, the Rheumatic Heart Disease Center, led by Children’s National Heart Institute experts Dr. Sable and Andrea Beaton, M.D., cardiologist, along with RHD leaders around the globe, will develop evidence-based strategies to strengthen the health system’s response to RHD through synergistic basic, clinical and population science research along the entire spectrum of the disease.

Andrea Beaton and Craig Sable

The Rheumatic Heart Disease Center, led by Children’s National Heart Institute experts Andrea Beaton, M.D., and Craig Sable, M.D., along with RHD leaders around the globe, will develop evidence-based strategies to strengthen the health system’s response to RHD.

The basic research project, led by James Dale, M.D., chief of the division of infectious disease at the University of Tennessee in Memphis, will work to better define the immune system response to Group A Streptococcal (GAS) infection, or strep throat, paving the way for vaccine development. In collaboration with a partner site in Cape Town, South Africa, experts will recruit 300 children ages 5-15 to participate for 24 months in a study capturing and classifying various strains of the GAS bacteria. Similar to the common flu, the strains of GAS bacteria vary from region to region and year to year. By identifying immune system targets, or how our bodies fight GAS, the research can inform the creation of effective and long-lasting vaccines.

Dr. Beaton will lead the clinical project that will work to improve understanding and detection of ARF, the precursor to RHD. According to Dr. Beaton, the current, outdated paradigm is that patients with RHD at one point experienced a full-blown episode of ARF – including fever, severe joint pains and rash. These symptoms should be unmistakable and prompt treatment, but in truth the disease remains vastly underdiagnosed in high-risk regions. Through an on-the-ground partnership with experts at Mulago National Referral Hospital in Uganda, the clinical project will work to enroll over 1,000 children ages 3-18 with more subtle symptoms, potentially suggestive of ARF, in order to paint a more accurate picture of the disease in Africa today.

“The gap between the low number of children diagnosed with ARF and the high number of young adults with advanced RHD remains one of the most challenging mysteries and barriers to improved RHD prevention,” said Dr. Beaton. “For the first time, we will systematically characterize the clinical, laboratory and echocardiographic features of ARF in low-resource settings, with the goal of developing a biological signature for ARF that can be translated into a diagnostic test and improve detection.”

Dr. Beaton expects that this research could benefit other related diseases too, such as kidney disease or serious skin infections.

The population research project, led by David Watkins, M.D., M.P.H., an expert in epidemiological and economic modeling at the University of Washington in Seattle, will work to build an economic case for prevention around the world, using the data from the basic and clinical work. The goal is to identify local gaps in delivery of health services for disease prevention and treatment and to measure the cost-effectiveness of RHD interventions, as well as the cost of inaction – especially as patients suffering from advanced RHD are often in the prime of their productive, adult lives. Researchers anticipate the findings will provide effective tools for addressing RHD in other endemic countries too.

Relationship between sedentary time and youth cardiovascular health

Heart disease is the leading cause of death in the United States, yet for many individuals it is preventable through modifications in diet, physical activity, and sedentary time – all major risk factors. Jacob Hartz, M.D., M.P.H., a cardiology fellow at Children’s National Health System, presented findings from his research on youth cardiovascular health during the American Heart Association (AHA) Scientific Sessions, held November 12-16 in New Orleans. The AHA Scientific Sessions featured the latest developments in science and cardiovascular clinical practice, including all aspects of basic, clinical, population, and translational science. Dr. Hartz spoke on “The Relationship Between Clustering of Cardiovascular Health Behaviors and Physical Fitness Among U.S. Adolescents – Data from the National Health and Nutrition Examination Survey,” and shared how grouping children with risk factors into clusters enabled researchers to pinpoint sedentary time as the leading predictor of heart health.

Read more about Children’s National AHA Scientific Sessions speakers.

How mindfulness can improve adolescent heart health

Could yoga, meditation, group support, or online video chats improve outcomes for adolescents with cardiac diagnoses? Vicki Freedenberg, Ph.D., R.N., electrophysiology nurse scientist at Children’s National Health System, shared insights from her research using these interventions at the American Heart Association (AHA) Scientific Sessions, held November 12-16 in New Orleans. The AHA Scientific Sessions featured the latest developments in science and cardiovascular clinical practice, including all aspects of basic, clinical, population, and translational science. In her presentation titled “Mindfulness Based Stress Reduction and Group Support Decrease Stress, Anxiety, and Depression in Adolescents with Cardiac Diagnoses: A Randomized Two-Group Study,” Freedenberg presented findings from her study comparing outcomes between cardiac patients who participated in a Mindfulness Based Stress Reduction program, which used meditation, yoga, and group support, and a second group that participated in a clinician-led online video support group with peers. Early results suggest that stress significantly decreased in both groups, and higher baseline anxiety and depression scores predicted lower levels of post-intervention anxiety and depression.

Read more about Children’s National AHA Scientific Sessions speakers.

Advances in 3-D imaging and printing

Laura Olivieri

The emerging field of 3-D printing and 3-D digital displays has the potential to change the way surgeons and cardiologists make decisions. Laura Olivieri, M.D., a cardiologist at Children’s National Health System, shared insights on this topic during the American Heart Association (AHA) Scientific Sessions, held November 12-16 in New Orleans. The AHA Scientific Sessions featured the latest developments in science and cardiovascular clinical practice, including all aspects of basic, clinical, population, and translational science. In her presentation “Cardiovascular Imaging for 3-D,” Dr. Olivieri explained how cardiovascular imaging physicians can “image gently” to create 3-D models while reducing patients’ exposure to radiation and sedation. She also shared best practices for producing 3-D models from magnetic resonance imaging and echocardiograms, which are often underutilized for this purpose.

Read more about Children’s National AHA Scientific Sessions speakers.