Participants at the annual “Make Your Medical Device Pitch for Kids!”™ competition

Two pediatric medical device companies awarded at pitch competition

Participants at the annual “Make Your Medical Device Pitch for Kids!”™ competition

Winners and finalists competed at UCLA during annual L.A. MedTech Week 2024. Left to right are: Nada Hanafi, MedTech Color Board treasurer; Vernessa Pollard, MedTech Color Board secretary; Dr. Sanna Gaspard, CEO and founder of Rubitection, (winner -$35,000 first prize); Dr. Kolaleh Eskandanian, Children’s National vice president and chief innovation officer; Kwame Ulmer, MedTech Color founder and board chair. Photo credit: MedTech Color

Alliance for Pediatric Device Innovation (APDI), a federally funded consortium led by Children’s National Hospital, and member MedTech Color announced the winners of the recent edition of the Make Your Medical Device Pitch for Kids!competition, which focused on recognizing and supporting African American and Hispanic pediatric medical device innovators. The awardees received a combined $50,000 in grant funding from APDI, made possible by the U.S. Food and Drug Administration (FDA) to support the advancement of pediatric medical technologies to the market.

The winners were selected from a field of five finalists who gave pitch presentations on their innovation’s attributes, benefits to patients and pathway to commercialization before a panel of five expert judges. The event was held on March 15 at the University of California, Los Angeles, as part of the annual MedTech Color Pitch Competition during L.A. MedTech Week 2024, powered by BioscienceLA.

The award-winning pediatric devices and companies are:

  • Rubitection, Pittsburgh, Pa.A low-cost skin assessment management tool for chronic wounds, Rubitection measures the properties of the skin. The system allows the user to monitor incremental changes in skin health to predict risk, monitor progression and customize care.
  • Kofimi Technology Inc., Danvers, Mass. This patent-pending pulse oximeter device is designed specifically for pediatric populations to provide superior accuracy for all levels of skin pigmentation. A pulse oximeter measures oxygen levels in the blood.

Why we’re excited

Funding innovators of African American and Hispanic backgrounds is crucial for advancing diversity, equity, and inclusion initiatives because it addresses systemic barriers and inequities that have historically hindered this group from accessing resources and opportunities in the life sciences sector,” said Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer at Children’s National and APDI program director and principal investigator. “Supporting a diverse group of innovators enriches the research and development process by bringing a variety of perspectives and viewpoints representing all populations.”

Along with the grant award, all finalists receive access to a network of supportive resources and expertise as part of their connection to APDI and MedTech Color.

Along with the pitch presentations, the event program included a keynote talk from Tonya Kinlow, vice president of Community Engagement, Advocacy and Government Affairs at Children’s National, highlighting advocacy initiatives leading to an all-inclusive system of care for children.

Children’s National leads the way

Julia Finkel, M.D., pediatric anesthesiologist at Children’s National and principal investigator for APDI, participated in the panel discussion “Inequity within Inequity,” which highlighted how racial disparities in pediatric healthcare remain a critical challenge across the United States. APDI’s goal is to advance pediatric devices that meet patient needs while promoting a more inclusive approach to discovering and supporting talented innovators.

“We believe there is a community of companies focused on platforms that treat or diagnose pediatrics,” said Kwame Ulmer, founder of MedTech Color. “This partnership allows us to significantly increase the support we provide for entrepreneurs in this area. We are delighted to be a part of the Children’s National community to drive positive patient outcomes.”

The patient benefit

Founded in 2017, MedTech Color is a nonprofit organization built on the same ideal: diverse leadership in the medical technology ecosystem leads to greater innovation and better outcomes. The organization works to advance the representation of people of color in the medical device industry and to nurture the next generation of founders. For more information on MedTech Color, visit medtechcolor.org.

APDI is one of five nonprofit consortia in the FDA’s Pediatric Device Consortia program that receives funding to provide a platform of services, expertise and grants to support pediatric innovators in bringing medical devices to the market that address the needs of children. Along with Children’s National, APDI members include Johns Hopkins University, CIMIT at Mass General Brigham, Tufts Medical Center, Medstar Health Research Institute, OrthoPediatrics Corp. and MedTech Color.

Advancements in pediatric medical devices continue to lag significantly behind those of adults, which is why APDI is focused on helping more pediatric medical device innovations achieve commercialization. For more information on APDI, visit innovate4kids.org

Nathan Kuppermann, M.D., M.P.H.

Nathan Kuppermann, M.D., M.P.H., named chief academic officer and chair of Pediatrics

Nathan Kuppermann, M.D., M.P.H.

Dr. Kuppermann will oversee research, education and innovation for the Children’s National Research Institute as well as academic and administrative leadership in the Department of Pediatrics at George Washington University School of Medicine & Health Services.

Children’s National Hospital has appointed Nathan Kuppermann, M.D., M.P.H., as its new executive vice president (EVP), chief academic officer (CAO) and chair of Pediatrics. In this role, Dr. Kuppermann will oversee research, education and innovation for the Children’s National Research Institute as well as academic and administrative leadership in the Department of Pediatrics at George Washington University School of Medicine & Health Services. He comes to Children’s National from UC Davis Health and UC Davis School of Medicine in Sacramento, CA, and will start in September.

After a national search, Dr. Kuppermann stood out for his exceptional contributions to clinical and academic research, focusing on pediatric emergency care, and his dedication to mentorship. For the past 18 years he has served as the Bo Tomas Brofeldt endowed chair of the Department of Emergency Medicine and is currently a distinguished professor of Emergency Medicine and Pediatrics, and the associate dean for Global Health at UC Davis Health.

“I was drawn to Children’s National by its nationally recognized work and dedication to innovation and team science,” says Dr. Kuppermann. “I’m eager to contribute to the remarkable work being done in both the research and education space to continue to improve the understanding, prevention and treatment of childhood diseases.”

Dr. Kuppermann is a pediatric emergency medicine physician and clinical epidemiologist, and a leader in emergency medical services for children, particularly in multicenter research. With more than 300 peer-reviewed research publications to his credit, Dr. Kuppermann has contributed extensively to high-impact journals including the New England Journal of Medicine, JAMA, BMJ and the Lancet.

“The Children’s National Research Institute is a key part of our health system’s ecosystem – it’s where we nurture innovation and pursue the most promising research,” says Michelle Riley-Brown, MHA, FACHE, president and CEO of Children’s National. “Dr. Kuppermann’s unwavering commitment to excellence in pediatric healthcare, research and innovation set him apart in a competitive field. I am confident he will advance our efforts in making breakthrough discoveries for kids everywhere.”

Dr. Kuppermann received his undergraduate degree from Stanford University, his medical degree from UC San Francisco School of Medicine and his Master of Public Health degree from the Harvard School of Public Health. He completed a pediatrics residency and chief residency at Harbor-UCLA Medical Center and a fellowship in Pediatric Emergency Medicine at Boston Children’s Hospital.

He has been recognized nationally and internationally for his research and mentorship. He was a Fulbright Distinguished Scholar in the U.K. and in 2010 was elected to the National Academy of Medicine. In 2022, he received the Maureen Andrew Mentor Award from the Society for Pediatric Research.

“Dr. Kuppermann’s leadership will undoubtedly propel the hospital’s efforts in advancing pediatric healthcare innovation, reinforcing Children’s National as a top-ranking institution,” says Horacio Rozanski, chair of the Children’s National Board of Directors. “We look forward to the positive impact he will make to the hospital’s overall mission, as well as its research and academic endeavors.”

Before and after pictures of the patient's improved gait

Next-generation genomics testing holds key to undiagnosed rare disease

Before and after pictures of the patient's improved gaitSeth Berger, M.D., Ph.D., felt the pull to dig deeper when he started reading the chart. An 11-year-old boy had an abnormal gait and couldn’t even walk in a straight line down the sidewalk to go trick-or-treating. Yet workups with neurology, orthopedics and an exome analysis of the patient’s genetic code did not provide a diagnosis. He had been getting worse for roughly three years.

With one of the largest clinical genetics departments in the country, Children’s National Hospital receives more than 10,000 visits a year from patients like this middle schooler. Often, they are children and caregivers who are searching for answers and follow-up support for diagnoses of genetic disorders, which impact so few people that only highly trained geneticists and genetic counselors can get to the root of the disorder.

“In genetics, we are finding layers of understanding. A negative clinical test is not always the final answer because the significance of variants can often be missed or misunderstood,” said Dr. Berger, a medical geneticist and principal investigator in the Center for Genetics Medicine Research at Children’s National. “It can take extensive research and a deep knowledge of the limits of certain tests to reach a diagnosis.”

The fine print

On page 4 of the patient’s genetics report, Dr. Berger found a reference to a pair of variants with no known clinical impact. Dr. Berger recognized that the genes referenced could affect proteins that drive potentially treatable neurological outcomes.

Dr. Berger ordered further testing, including biochemical testing of the patient’s blood and a phenylalanine loading challenge, a test that measures how the body metabolizes certain amino acids. With the results, he confirmed a recessive GCH1 deficiency in the patient was causing a condition called DOPA-responsive dystonia, a disorder that causes involuntary muscle contractions, tremors and uncontrolled movements. Laura Schiffman Tochen, M.D., director of the Movement Disorders Program at Children’s National, started the patient on levodopa-carbidopa — a drug combination used to treat Parkinson’s disease and other neurological disorders — and within two hours the boy showed improvement. His gait was almost normal.

Why we’re excited

Dr. Berger presents at conferences on this case and several other medical mysteries that he’s recently solved in his clinical practice and his role at the Pediatric Mendelian Genomics Research Center, a Children’s National program immersed in a federally funded research study to better understand how differences in genetic material can affect human health. As part of his work, he’s joined the GREGoR project (Genomic Research to Elucidate the Genetics of Rare Disease), which hopes to increase the number of genetic disorders where a cause can be identified. The elite genetics consortium includes nationally recognized research centers – the University of California at Irvine, Broad Institute, University of Washington, Baylor University, Stanford University, Invitae and Children’s National – which are working together to harness cutting-edge genomics sequencing capabilities. They hope to enroll thousands in their research, funded by the National Institutes of Health.

“It’s truly stunning what genetic sequencing can find. The outcomes can be life-changing,” said Dr. Berger. “These cases with life-altering diagnoses don’t come along every day, but when they do, they make the hunt to find answers all the more worthwhile.”

desktop computer showing the CNRI Annual Report

Driving pediatric breakthroughs through 2023

desktop computer showing the CNRI Annual ReportThe Children’s National Research Institute released its 2022-2023 Academic Annual Report. In the report, a summary of the past academic year highlights the accomplishments of each of the institute’s research centers, provides research funding figures and exalts some of the institute’s biggest milestones.

The stories in the report are a testament to the hard work and dedication of everyone at the Children’s National Research Institute.

We celebrated five decades of leadership and mentorship of Naomi Luban, M.D., and her incredible accomplishments in the W@TCH program, which have been instrumental in shaping the future of pediatric research.

We also celebrated innovation, highlighting our recent FDA award to lead a pediatric device consortium, which recognizes our commitment to developing innovative medical devices that improve the lives of children.

Breakthroughs at the Research & Innovation Campus continued as our researchers worked tirelessly to develop new treatments and therapies that will transform the lives of children and families around the world.

Taking a look at the breakthroughs happening in our now six research centers, we spotlighted the following stories:

  • Reflecting on decades of progress in the blood, marrow and cell therapy programs at Children’s National. Our researchers have made significant strides in this field, and we are proud to be at the forefront of these life-saving treatments.
  • In genetic medicine, we continue to be a beacon of hope for families facing rare and complex conditions. Our researchers are making incredible breakthroughs that are changing the landscape of pediatric medicine.
  • We are also proud to share the $90 million award received from an anonymous donor to support pediatric brain tumor research. The predominant focus of this award is to develop new treatments that will improve outcomes for children with this devastating disease.
  • This year, we opened a new Center that enhances our research capabilities in the field of Prenatal, Neonatal & Maternal Health Research. We are excited about the possibilities this new center will bring and look forward to the discoveries that will emerge from it.
  • In addition, we are driving future pandemic readiness with the NIH funded Pediatric Pandemic Network. Our researchers are using cutting-edge technology and innovative approaches to prepare for the next pandemic and protect children.
  • We are also exploring the potential of artificial intelligence (AI) in pediatric breakthroughs. Our researchers are using machine learning and other AI techniques to develop new treatments and therapies that will transform the lives of children.
illustration of laser damaging the plasma membrane

The microscopic world of cell healing: A window into future therapies

illustration of laser damaging the plasma membrane from Advanced Science coverUnraveling how cells mend after injury serves as a key to unlocking potential therapies. Recent findings from the Center for Genetic Medicine Research at Children’s National Hospital offered surprising insights into the cell’s healing mechanisms by illuminating the intricate cellular responses to various types of injuries.

The study, featured on the back cover of the latest issue of Advanced Science, found that cells respond in distinct ways depending on the type of injury, such as a traumatic muscle tear that creates a large injury or tiny holes in the cell membrane caused by pathogenic proteins. Daniel Bittel, DPT, Ph.D., a research postdoctoral fellow at the Center for Genetic Medicine Research, said that cells are routinely injured from even everyday activities, such as walking up a flight of stairs.

“Injuries often involve damage to the plasma membrane,” Bittel said. “We wanted to investigate how healing happens at the subcellular level to better understand diseases and develop targeted therapies. We were especially curious about muscle cells because, interestingly, healthy ones get stronger the more that they are injured.”

The fine print

Using the center’s unique, custom-built microscope, the research team zoomed in on the process of cellular healing to watch how cells activate repair after injuries. Using a laser to damage the plasma membrane, they mimicked mechanically induced trauma. They also used a pathogen-derived protein to create nanoscale pinprick injuries in a cell’s plasma membrane that resemble those that are seen after strenuous muscle exertion.

Then, they watched as cells went to work within seconds, engaging healing mechanisms tailored to the type of injury. In the case of a cell facing numerous pinpricks along the cell membrane, it immediately deployed the endocytic pathway used by the cells to eat and drink. This process helped remove the injurious agents and the tiny holes they made. However, with a larger mechanical injury, the cells demonstrated patience, allowing the plasma membrane to seal before clearing up the damage by the same endocytic pathway.

 The big picture

The paper is part of an ongoing body of research on cell injury that will inform future investigations into a wide range of pediatric health issues including muscular dystrophies, injuries to neurons, orthopedic injuries from sports and other mechanical damage to tissues.

Jyoti Jaiswal, M.Sc., Ph.D., senior investigator at the Center for Genetic Medicine Research, said this work is foundational in the development of new therapies. “Knowing where the problem lies will help us figure out what therapy will work best and target the therapy to address the specific deficit,” he said. “This work will pave the way to help tailor therapies and tackle diseases more effectively.”

The international NexTGen team

NexTGen team assembles to delve into progress on CAR T-cell therapies

The international NexTGen team assembled at the Children’s National Research & Innovation Campus for their annual meeting to share progress made in their first full year of work on the $25-million Cancer Grand Challenge, focused on creating a CAR T-cell therapy for pediatric solid tumors.

“It was invigorating to bring the whole team together from our eight institutions in the U.S., U.K. and France, as we uncover opportunities in our research and share the headway that we have made,” said Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research and interim chief academic officer at Children’s National Hospital. “Breakthroughs happen when Team Science collaborates, and that is exactly what is happening here with the NexTGen team.”

Why we’re excited

Over the course of two days, more than 85 team members met to discuss the six work packages that are coming together, with the ambitious goal of making CAR T-cell therapies the standard of care for solid tumors within the next decade:

  • Discovery of new targets
  • The tumor microenvironment
  • Component engineering
  • Integration and modeling
  • Clinical studies
  • Data integration

Each work package includes a patient advocate – individuals with a personal connection to cancer as a family member or survivor – who offers their invaluable perspectives on the research and treatment process. Many attended the meeting, sitting alongside the oncologists, immunologists, mathematicians, molecular biologists and other leading experts.

The big picture

The Cancer Grand Challenges are funded by grants from the National Cancer Institute, Cancer Research U.K. and the Mark Foundation for Cancer Research. Their goal is to drive progress against cancer by empowering global leaders in the research community to take on tough challenges and think differently.

“They call it a ‘grand challenge’ for a reason,” Dr. Bollard said. “It’s going to take the effort and expertise of all these individuals to make a new therapy a reality. I have confidence that we can do it.”

Auditorium at the Cell and Gene Therapy in the DMV Symposium

Cell & Gene Therapy in the DMV: Experts collaborate for cures

Leaders in medicine, academia, industry and state and local government came together for the first annual Cell and Gene Therapy in the DMV Symposium, hosted at the Children’s National Research & Innovation Campus. The mission: Connect the local scientific community – bursting with expertise and collaboration potential – to develop these cutting-edge therapies for cancers, sickle cell disease and immune-mediated disorders.

The daylong event drew over 100 experts from a range of organizations in the D.C, Maryland and Virginia region, sometimes called the DMV: Children’s National Hospital, the Food and Drug Administration, the National Institute of Standards and Technology, the National Institutes of Health, the General Accounting Office, Virginia Tech, MaxCyte, AstraZeneca, Kite Pharma, Montgomery College, the Maryland State Department of Commerce and more. Together, they unraveled a host of topics including the regulatory environment, workforce development and training, research standards and the promise of these therapies.

“Our Cell & Gene Therapy Symposium brings together our current collaborators and future partners in the D.C., Maryland and Virginia space, which is an incredibly rich area. We see tremendous opportunity and breakthroughs in our future,” said Catherine Bollard, M.D., M.B.Ch.B., interim chief academic officer and chief of Pediatrics at Children’s National Hospital. “Many different diseases rely on the immune system to either be ramped up or to be controlled, and we can seize on these biological processes. Cell and gene therapies are at the heart of where medicine is going.”

The big picture

For decades, oncologists largely have turned to the same menu of treatments to fight cancer, including surgery, chemotherapy and radiation. Cell and gene therapies offer the promise of training the immune system to fight diseases with fewer side effects and potentially higher success rates. Early work has shown progress in liquid cancers, like leukemia, raising the possibility that the therapies could be used on solid tumors and other disorders, such as lupus and sickle cell disease. However, many disciplines must come together to yield discoveries.

“Nobel Prize-winning work doesn’t necessarily translate into available therapies for patients. It takes a whole community like this to make it happen,” said Cenk Sumen, chief scientific officer at MaxCyte Inc., an international cell engineering company based in Rockville, Md. “It has been exciting to see this diverse group of stakeholders come together, which is probably unmatched anywhere on the planet.”

Why we’re excited

Symposium host Patrick Hanley, Ph.D., chief and director of the Cellular Therapy Program at Children’s National, said the goal was to cement the region as the No. 1 location for this highly technical research and development. He believes Children’s National can offer essential elements to this success, given its clinical and research expertise, workforce training opportunities and geographic proximity to the scientific leadership of the federal government. “What makes us unique is our proximity to all the players who can help create new treatment options for patients. We truly are the biomedical capital of the world,” he said.

Michael Friedlander, vice president for health sciences at Virginia Tech, notes that the earliest stages of invention will emanate from academic labs including those at Virginia Tech and Children’s National. “You have basic scientists who are doing fundamental research on properties and procedures that will lead to the new therapies of tomorrow,” he said. “We are putting in place the fundamental pieces to advance children’s health in all dimensions.”

What’s ahead

One challenge is developing a workforce to help prepare cell therapies for patients, following precise standards to ensure the therapy works as designed. Children’s National does this training, as do others in the region. Lori Kelman, Ph.D., M.B.A., biotechnology coordinator and professor at Montgomery College, said that the area is full of people who want to help people and who like science.

“The thing that people might not know is that you don’t need a Ph.D. to work in cell and gene therapy,” she said. “There are opportunities at all levels, including the entry level, which is where a great career often starts.”

ARPA-H logo

Children’s National selected as member of ARPA-H Investor Catalyst Hub spoke network

ARPA-H logoThe hospital will advocate for the unique needs of children as part of nationwide network working to accelerate transformative health solutions.

Children’s National Hospital was selected as a spoke for the Investor Catalyst Hub, a regional hub of ARPANET-H, a nationwide health innovation network launched by the Advanced Research Projects Agency for Health (ARPA-H).

The Investor Catalyst Hub seeks to accelerate the commercialization of groundbreaking and accessible biomedical solutions. It uses an innovative hub-and-spoke model designed to reach a wide range of nonprofit organizations and Minority-Serving Institutions, with the aim of delivering scalable healthcare outcomes for all Americans.

“The needs of children often differ significantly from those of adults. This partnership reflects our commitment to advancing pediatric healthcare through innovation and making sure we’re addressing those needs effectively,” said Kolaleh Eskandanian, Ph.D., M.B.A., vice president and chief innovation officer at Children’s National. “Leveraging the strength of this hub-and-spoke model, we anticipate delivering transformative solutions to enhance the health and well-being of the patients and families we serve.”

Children’s National joins a dynamic nationwide network of organizations aligned to ARPA-H’s overarching mission to improve health outcomes through the following research focus areas: health science futures, proactive health, scalable solutions and resilient systems. Investor Catalyst Hub spokes represent a broad spectrum of expertise, geographic diversity and community perspectives.

“Our spoke network embodies a rich and representative range of perspectives and expertise,” said Mark Marino, vice president of Growth Strategy and Development for VentureWell and project director for the Investor Catalyst Hub. “Our spokes comprise a richly diverse network that will be instrumental in ensuring that equitable health solutions reach communities across every state and tribal nation.”

As an Investor Catalyst Hub spoke, Children’s National gains access to potential funding and flexible contracting for faster award execution compared to traditional government contracts. Spoke membership also offers opportunities to provide input on ARPA-H challenge areas and priorities, along with access to valuable networking opportunities and a robust resource library.

Alliance for Pediatric Device Innovation consortium members

Children’s National awarded nearly $7.5 million by FDA to lead pediatric device innovation consortium

Alliance for Pediatric Device Innovation consortium membersChildren’s National Hospital was awarded nearly $7.5 million in a five-year grant to continue its leadership of an FDA-funded pediatric device consortium. Building upon a decade of previous consortium leadership, the new consortium is Alliance for Pediatric Device Innovation (APDI) and features a new and expanded roster of partners that reflects its added focus on providing pediatric innovators with expert support on evidence generation, including the use of real-world evidence (RWE), for pediatric device development.

Collaborating for success

With the goal of helping more pediatric medical devices complete the journey to commercialization, APDI is led by Children’s National, with Kolaleh Eskandanian, Ph.D., M.B.A., vice president and chief innovation officer, serving as program director and principal investigator, and Julia Finkel, M.D., pediatric anesthesiologist and director of Pain Medicine Research and Development in the Sheikh Zayed Institute for Pediatric Surgical Innovation, serving as principal investigator.

Consortium members include Johns Hopkins University, CIMIT at Mass General Brigham, Tufts Medical Center, Medstar Health Research Institute and MedTech Color. Publicly traded OrthoPediatrics Corp., which exclusively focuses on advancing pediatric orthopedics, is serving as APDI’s strategic advisor and role model for device innovators whose primary focus is children.

Why we’re excited

Consortium initiatives got underway quickly with the announcement of a special MedTech Color edition of the “Make Your Medical Device Pitch for Kids!”competition that focuses on African American and Hispanic innovators. Interested innovators can find details and apply at MedTech Color Pitch Competition. The competition was announced at the recent MedTech Color networking breakfast on Oct. 10,2023 at The MedTech Conference powered by AdvaMed.

“We all benefit from greater equity and inclusion among pediatric MedTech founders, decision-makers, investigators and developers in more effectively addressing the needs of the entire pediatric population,” said Eskandanian. “We need the expertise and insights of innovators from diverse backgrounds, and we want to provide these talented individuals with more opportunities to present their work and share their perspectives on pediatric device development.”

Additional details

APDI is one of five FDA-funded consortia created to provide a platform of services, expertise and funding to help pediatric innovators bring medical devices to the market that specifically address the needs of children.

 

Motor neuron connecting to muscle fiber

FDA approves muscular dystrophy drug built on Children’s National research



Motor neuron connecting to muscle fiber

Duchenne muscular dystrophy (DMD) is the most common hereditary neuromuscular disease.



Boys with Duchenne muscular dystrophy (DMD) have a clinically proven, new treatment option with the Food and Drug Administration’s approval of vamorolone, a steroidal-type, anti-inflammatory drug developed based on research performed at Children’s National Hospital.

Created by ReveraGen BioPharma Inc., vamorolone has a molecular structure similar to traditional corticosteroids, which are currently used to treat DMD. Yet its structure was found to be chemically different enough to reduce unwanted side effects, including brittle bones and reduced stature. Nearly two decades ago, ReveraGen leaders – President and CEO Eric Hoffman, Ph.D., and Vice President for Research Kanneboyina Nagaraju, D.V.M., Ph.D. – launched research efforts into the drug when they led the Center for Genetic Medicine Research at Children’s National. They worked with then-Chief Academic Officer Mark Batshaw, M.D., on the new clinical option.

“Throughout my career, I have treated children with DMD, and I have seen over time how their shorter heights and brittle bones impact them physically and emotionally – in terms of their self-esteem and ability to participate in activities,” Dr. Batshaw said. “This drug should help these boys function more effectively and prevent certain long-term complications.”

The patient benefit

Muscular dystrophy includes a group of degenerative genetically inherited neuro-muscular diseases that strike only boys. DMD is the most common, severe and life-threatening form of muscular dystrophy. ReveraGen studied vamorolone for patients ages two years and up in the hopes of providing a new, FDA-approved treatment option for these children. In clinical trials, daily treatment with vamorolone improved muscle strength and stature with results comparable to prednisolone, but without some of the most impactful side effects of steroids, particularly the stunted growth and weakened bones.

Children’s National Hospital leads the way

Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer for Children’s National, said Drs. Hoffman and Nagaraju’s work on the drug paved the way for entrepreneurship at the hospital, as they were the first faculty members to launch a spin-off company. Since then, more than 130 faculty members have been named as inventors on 132 patents. Children’s National is now home to Innovation Ventures, the hospital’s intellectual property development and commercialization arm, which provides guidance and resources to academic entrepreneurs who introduce a concept for pediatric medical products.

“We cannot wait to see the tremendous effort behind vamorolone in the hands of patients and clinicians treating Duchenne muscular dystrophy,” Eskandanian said. “Today’s FDA approval for ReveraGen shows the importance of supporting clinicians and researchers who are developing solutions to advance healthcare for children.”

Why we’re excited

Hoffman said the drug has been through a series of clinical trials showing advantages over the current treatment options. In 2024, Catalyst Pharma will market vamorolone under the trade name Agamree in the United States.

“Vamorolone was developed using a different business model and drug development approach, including partnerships with the National Institutes of Health, Department of Defense, the European Commission and more than a dozen international nonprofit foundations,” Dr. Hoffman said. “The collaborative, community-engaged approach—including 32 academic clinical sites in 11 countries — and the participation of hundreds of DMD families led to this approval today.”

Patient and doctor demoing Rare-CAP technology

M.D. in your pocket: New platform allows rare disease patients to carry medical advice everywhere

When someone has a rare disease, a trip to the emergency room can be a daunting experience: Patients and their caregivers must share the particulars of their illness or injury, with the added burden of downloading a non-specialist on the details of a rare diagnosis that may change treatment decisions.

Innovators at Children’s National Hospital and Vanderbilt University Medical Center, supported by Takeda, are trying to simplify that experience using a new web-based platform called the Rare Disease Clinical Activity Protocols, or Rare-CAP. This revolutionary collection of medical information allows patients to carry the latest research-based guidance about their rare disorders in their phones, providing a simple QR code that can open a trove of considerations for any medical provider to evaluate as they work through treatment options for someone with an underlying rare disease.

“No one should worry about what happens when they need medical help, especially patients with rare diseases,” said Debra Regier, M.D., division chief of Genetics and Metabolism at Children’s National and Rare-CAP’s lead medical advisor. “We built this new tool because I have watched as my patient-families have wound up in an emergency room — after all, kids get sprains or fractures — but they don’t have the expertise of a rare disease specialist with them. My hope is that they’re going to pull out their phones and access Rare-CAP, which will explain their rare disease to a new provider who can provide more thoughtful and meaningful care.”

The big picture

A rare disease is defined as any disorder that affects less than 200,000 people in the United States. Some 30 million Americans are believed to be living with one of the 7,000 known rare disorders tracked by the National Organization of Rare Diseases (NORD). Led by Dr. Regier, the Rare Disease Institute at Children’s National is one of 40 NORD centers for excellence in the country that provide care, guidance and leadership for the wide array of disorders that make up the rare disease community.

While a key goal of Rare-CAP is to bolster patient self-advocacy, the platform will also allow medical providers to proactively search for protocols on rare diseases when they know they need specialized advice from experts at Children’s National, a network of tertiary care centers and patient organizations.

As a leading values-based, R&D-driven biopharmaceutical company, Takeda has committed $3.85 million to the project to help activate meaningful change and empower a brighter future for rare disease communities, providing a unique understanding of the struggle that patients and caregivers face when they need care.

“Our team, alongside the medical and rare disease community, saw the need for a single portal to collect standardized care protocols, and we are thrilled to see this innovative tool come to life,” said Tom Koutsavlis, M.D., head of U.S. Medical Affairs at Takeda. “People with rare diseases and their caregivers need faster access to authoritative medical information that providers anywhere can act on, this will lead to improving the standard of care, accelerating time to diagnosis and breaking down barriers to increase equitable access.”

The patient benefit

The creators of Rare-CAP imagined its use in a wide range of settings, including emergency rooms, surgical suites, dental offices, urgent care offices and school clinics. The platform will eventually profile thousands of rare diseases and lay out the implications for care, while also creating a dynamic conversation among users who can offer updates based on real-world experience and changes in medical guidance.

“Our patients are unique, and so is this tool,” Dr. Regier said. “As we roll out Rare-CAP, we believe it is just the beginning of the conversation to expand the platform and see its power for the patient and provider grow, with each entry and each new rare disease that’s added to the conversation.”

Marius Linguraru, D.Phil., M.A., M.Sc., a co-principal investigator for the project, presents

Children’s National joins team to use AI to expand health knowledge in Kenya

Marius Linguraru, D.Phil., M.A., M.Sc., a co-principal investigator for the project, presentsChildren’s National Hospital is joining a team of global health researchers to use large language models (LLMs) like ChatGPT to help Kenyan youth learn about their health and adopt lifestyles that may prevent cancer, diabetes and other non-communicable diseases.

The work, which is one of nearly 50 Grand Challenges Catalyzing Equitable Artificial Intelligence (AI) Use grants announced by the Bill & Melinda Gates Foundation, will harness the emerging power of AI to empower young people with information that they can carry through adulthood to reduce rates of unhealthy behaviors including physical inactivity, unhealthy diet and use of tobacco and alcohol.

“We are thrilled to be part of this effort to bring our AI expertise closer to young patients who would benefit dramatically from technology and health information,” said Marius George Linguraru, D.Phil., M.A., M.Sc., a co-principal investigator for the project, the Connor Family Professor in Research and Innovation at Children’s National and principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation. “Using generative AI, we will build an application to enhance the knowledge, attitudes and healthy habits of Kenyan youth and use this as a foundation to improve health inequities around the globe.”

Why it matters

A lower middle-income country located on the east coast of Sub-Saharan Africa, Kenya is home to 50 million people and one of the continent’s fastest-growing economies. English is one of Kenya’s official languages, and the country has been recognized as a technology leader in Africa, with 82% of Kenyans having phone connectivity. Taken together, these factors make the country an ideal location to deploy an LLM-based platform designed to improve health information and attitudes.

The Gates Foundation selected this project from more than 1,300 grant applications. The nearly 50 funded projects are aimed at supporting low- and middle-income countries to harness the power of AI for good and help countries participate in the AI development process. The project’s findings will contribute to building an evidence base for testing LLMs that can fill wide gaps in access and equitable use of these tools. Each of the grants provides an opportunity to mitigate challenges experienced by communities, researchers and governments.

What’s next

The project development will be led by the National Cancer Institute of Kenya, with Linguraru and other global experts advising the effort from Kenyan institutions and Stanford University. Researchers plan to enroll youth from universities, shopping malls, markets, sporting events and other high-traffic locations. The study will look at participants’ risk factors and how their attitudes toward healthier lifestyles changed after engaging with the new LLM platform.

“The team is thrilled to be selected as one of the nearly 50 most promising AI proposals in the Gates Foundation Grand Challenge competition, and we look forward to seeing how our work can benefit the health of Kenyan youth,” said Dr. Martin Mwangi, principal investigator for the project and head of the Cancer Prevention and Control Directorate at the National Cancer Institute of Kenya. “If successful, we hope to share this model and the expertise we gain to expand health equity and knowledge to other regions.”

Attendees at the inaugural symposium on AI in Pediatric Health and Rare Diseases

AI: The “single greatest tool” for improving access to pediatric healthcare

Attendees at the inaugural symposium on AI in Pediatric Health and Rare Diseases

The daylong event drew experts from the Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere to start building a community aimed at using data for the advancement of pediatric medicine.

The future of pediatric medicine holds the promise of artificial intelligence (AI) that can help diagnose rare diseases, provide roadmaps for safer surgeries, tap into predictive technologies to guide individual treatment plans and shrink the distance between patients in rural areas and specialty care providers.

These and dozens of other innovations were contemplated as scientists came together at the inaugural symposium on AI in Pediatric Health and Rare Diseases, hosted by Children’s National Hospital and the Fralin Biomedical Research Institute at Virginia Tech. The daylong event drew experts from the Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere to start building a community aimed at using data for the advancement of pediatric medicine.

“AI is the single greatest tool for improving equity and access to health care,” said symposium host Marius George Linguraru, D.Phil., M.A., M.Sc., principal investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation. “As a population, kids are vastly underrepresented in scientific research and resulting treatments, but pediatric specialties can use AI to provide medical care to kids more efficiently, more quickly and more effectively.”

What they’re saying

Scientists shared their progress in building digital twins to predict surgical outcomes, enhancing visualization to increase the precision of delicate interventions, establishing data command centers to anticipate risks for fragile patients and more. Over two dozen speakers shared their vision for the future of medicine, augmented by the power of AI:

  • Keynote speaker Subha Madhavan, Ph.D., vice president and head of AI and machine learning at Pfizer, discussed various use cases and the potential to bring drugs to market faster using real-world evidence and AI. She saw promise for pediatrics. “This is probably the most engaging mission: children’s health and rare diseases,” she said. “It’s hard to find another mission that’s as compelling.”
  • Brandon J. Nelson, Ph.D., staff fellow in the Division of Imaging, Diagnostics and Software Reliability at the Food and Drug Administration, shared ways AI will improve diagnostic imaging and reduce radiation exposure to patients, using more advanced image reconstruction and denoising techniques. “That is really our key take-home message,” he said. “We can get what … appear as higher dose images, but with less dose.”
  • Daniel Donoho, M.D., a neurosurgeon at Children’s National, introduced the audience to the potential of “Smart ORs”: operating rooms where systems can ingest surgery video and provide feedback and skill assessments. “We have to transform the art of surgery into a measurable and improvable scientific practice,” he said.
  • Debra Regier, M.D., chief of Genetics and Metabolism at Children’s National, discussed how AI could be used to diagnose and treat rare diseases by conducting deep dives into genetics and studying dysmorphisms in patients’ faces. Already, Children’s National has designed an app – mGene – that measures facial features and provides a risk score to help anyone in general practice determine if a child has a genetic condition. “The untrained eye can stay the untrained eye, and the family can continue to have faith in their provider,” she said.

What’s next

Linguraru and others stressed the need to design AI for kids, rather than borrow it from adults, to ensure medicine meets their unique needs. He noted that scientists will need to solve challenges, such as the lack of data inherent in rare pediatric disorders and the simple fact that children grow. “Children are not mini-adults,” Linguraru said. “There are big changes in a child’s life.”

The landscape will require thoughtfulness. Naren Ramakrishnan, Ph.D., director of the Sanghani Center for Artificial Intelligence & Analytics at Virginia Tech and symposium co-host, said that scientists are heading into an era with a new incarnation of public-private partnerships, but many questions remain about how data will be shared and organizations will connect. “It is not going to be business as usual, but what is this new business?” he asked.

child in hospital bed

$96 million philanthropic investment will transform rare pediatric brain tumor research and care

child in hospital bedChildren’s National Hospital announced a $96 million investment from an anonymous donor family to transform rare childhood brain tumor research and care. The donation, which strengthens our globally recognized leadership in the field, is one of the largest in the hospital’s history.

Children’s National will harness the investment to recruit more top talent and advance the most promising research. This will produce safer, more effective treatments. It also will elevate standards of care to help children with rare brain tumors thrive for a lifetime.

The big picture

Brain tumors are the most common solid tumors affecting children. They are especially challenging in kids because their brains are still developing. The disease and current treatments can put them at risk for lifelong complications.

The anonymous family’s investment provides new hope for patients who face rare and often challenging brain tumor diagnoses — in the Washington, D.C., community and around the world.

“This incredible partnership will lift up one of the nation’s top pediatric brain tumor programs into the stratosphere,” said Kurt Newman, M.D., president and CEO of Children’s National. “It will immediately propel our best-in-class research and care, allowing us to bring new therapies to children with brain tumors. This fundamentally changes the healthcare journey and long-term outcomes for children and their families.”

Why it’s important

This transformational investment will have a far-reaching impact on our ability to save and improve the lives of children with brain tumors. Funds will fuel collaborative breakthroughs across a range of scientific and psychosocial approaches.

The partnership will supercharge highly individualized and promising treatments for children with brain tumors. We will radically transform the research landscape with a focus on:

  • Low intensity focused ultrasound (LIFU) – Advancing laboratory research and a clinical program designed to treat childhood brain tumors with LIFU therapy
  • Cellular immunotherapy – Testing new gene-engineered immune cell products and accelerating their integration into standards of care
  • Rare Brain Tumor Program – Propelling new clinical trials through the hospital’s national and global leadership in pediatric brain tumor consortia. Already, Children’s National is leading a new collaborative with hospitals in North America, South America and Europe to better understand and find novel treatments for these rare diseases
  • Neurosurgery innovation – Exploring multiple ways to perform safer, more effective neurosurgery and developing new methods to enhance drug/agent delivery
  • Precision medicine – Recruiting leading scientists to advance biology-informed therapies that can be targeted for children across a spectrum of brain tumors
  • Good Manufacturing Practices (GMP) facility – Expanding our GMP, one of the first standalone facilities at a children’s hospital in the country, to translate new discoveries into clinical trials more rapidly
  • Additional priorities including expansion of clinical research infrastructure and growth of bioinformatics, brain tumor repository and molecular diagnostics initiatives

The partnership also transforms how we approach care. It will power our pursuit of psychosocial, behavioral health and neuroscientific initiatives to help kids live well and cope with the unique circumstances of their diagnosis. We will focus on:

  • Lifetime health and wellness – Building a world-class research and clinical care program to shape a new paradigm for supporting a child’s physical and emotional health during and long after cancer treatment
  • Child Mental Health & Behavioral Brain Tumor Lab – Establishing a robust neuro-oncology mental health program that delivers timely interventions and specialized psychiatric care for patient well-being
  • Additional priorities including a new Neuroscience Nursing Excellence Program and growth of psychosocial support activities that bring comfort and encouragement to children during their treatment journey

Children’s National is proud to lead the way to a better future for pediatric rare brain tumor patients and expand our internationally recognized capabilities for neuro-oncology care.

teen parents with baby

Community-wide program to support teen parents serves as a model for engagement

More than 500 adolescent mothers, caregivers and community members benefitted from a coordinated “collective impact” model to provide support aimed at addressing the litany of strains faced by teen parents, according to a case study published Wednesday in the journal Pediatrics.

Known as the District of Columbia Network for Parenting and Expectant Teens (DC NEXT), the model used well-tested pillars of community organization to provide services and care that bolstered the well-being of pregnant and expectant teens in the city. The case study found that the 3-year-old program, which included teen advisors to help guide the mission, could serve as a model in other areas with high rates of teen parents.

“There’s no system of care for teen parents in Washington, D.C., or really anywhere in our country,” said Yael Smiley, M.D., Children’s National Hospital pediatrician and the study’s lead author. “Our coalition came together to connect the resources and the people who care about young parents and their families to improve their health, their outcomes, their well-being, and set them up for success. We fuse representatives from healthcare, education and housing policy — people who care about creating the very best outcomes possible.”

The patient benefit

More than 140,000 teens became parents in 2021 in the United States. In Washington, D.C., more than 300 babies are born to teens each year, and the rate of births to young teens ages 15 to 17 is double the national average. These young parents often face barriers to childcare and education and poor birth outcomes, often stemming from a lack of access to prenatal care.

To address these obstacles, the network assembled a city-wide network in 2020 to follow the five pillars of an evidence-based “collective impact” model:

  • Create a common agenda
  • Design shared measurement systems
  • Host mutually reinforcing activities
  • Foster continuous communication
  • Rely on trusted backbone support

What’s unique

DC NEXT was housed at the District of Columbia Primary Care Association (DCPCA), which received the 3-year, $4.5 million federal grant and provided the leadership. At Children’s National, Dr. Smiley led a team that partnered with DCPCA and Howard University to direct a network of community clinics, nonprofits and other organizations whose mission was to support adolescent parents. Hundreds of client-facing staff members were trained to provide trauma-informed, human-centered care. DC NEXT also engaged directly with teen mothers through well-being surveys that led to improved access to essential programs, including resources for housing and food security. Over 550 young parents and caregivers have been impacted by the program.

The leadership quickly realized that the teen parents needed a voice and created a “context team” of paid teen advisors who provided insights into their unique experiences and needs as parents. They help set the agenda, choose program offerings and tailor communications to their peers.

“If the network can continue to grow and support young parents to achieve their health and well-being goals, the impact will be felt across generations,” said Dr. Smiley.

 

Germ cell tumor of testicle under microscopy

New research: Genes that drive testicular cancer identified

In the largest sequencing study to date on testicular cancer, researchers at Children’s National Hospital have identified genes that contribute to testicular germ cell tumors (TGCT), the most common cancer among young, white men.

The findings, published in European Urology, provide direction for future screening and treatment of this disease, which can strike during the teen years and often runs in families. While treatable when identified early, testicular cancer leads to infertility, mental health issues and sometimes death, making its identification crucial for young adults.

“Testicular cancer is really a young person’s disease,” said Louisa Pyle, M.D., Ph.D. , a pediatrician, medical geneticist and research geneticist at the Children’s National Rare Disease Institute. “Most folks who have testicular cancer are between the ages of 15 and 45. Even though testicular cancer is relatively rare in the cancer world, it results in the greatest number of years lost among all adult cancers.”

What we hope to discover

Dr. Pyle led a research team that included experts at the National Cancer Institute and the University of Pennsylvania to study families with multiple members diagnosed with testicular cancer. They used whole exome sequencing to identify variants in many genes that predisposed patients to TGCT. Their work suggests that multiple variants – inherited together – increased the risk for the disease and provides potential routes for drugs that could be used for prevention and treatment.

“We found many genes that help us understand how testicular cancer happens,” Dr. Pyle said. “Our hope is that we can use that to try to come up with better treatments or better ways to preserve fertility for people with testicular cancer or gonadal differences.”

The patient benefit

Testicular cancer most often strikes men of European ancestry. It is also more common among intersex patients and those with differences in sex development, which is a clinical and research focus for Dr. Pyle. Medically, these are children who have a change in the biological characteristics of sex, including their chromosomes, hormones, gonads or physical body parts.

By studying a more common version of testicular cancer, the team learned about the underlying genetics in a way that will benefit intersex patients.

“One of the things we do in medicine is study a common version of the rare thing,” Dr. Pyle said.  “Through this research, we learned that the same genes that cause intersex traits in some patients are also changed in subtle ways for people with testicular cancer. This is a way to study something that could improve care for those kids, by studying a group that has greater numbers.”

Children’s National Research & Innovation Campus

Research campus joins Global Network of Innovation Districts

Children’s National Research & Innovation Campus

At the RIC’s 12-acre campus in Northwest Washington, D.C., experts from Children’s National work alongside public and private partners in industry, universities, federal agencies, start-up companies and academic medical centers to find solutions to some of science’s most vexing challenges.

The Children’s National Research & Innovation Campus (RIC) has become the first science ecosystem dedicated to pediatric health to join a network of over three dozen innovation districts worldwide that integrate research space with sustainable communities to create models for urban work and living.

Known as the Global Network of Innovation Districts (GNID), the community was conceived to unlock the design of campuses like the RIC to create collaborations among highly trained professionals. At the RIC’s 12-acre campus in Northwest Washington, D.C., experts from Children’s National work alongside public and private partners in industry, universities, federal agencies, start-up companies and academic medical centers to find solutions to some of science’s most vexing challenges. The campus is surrounded by mass transit, open spaces, retail and housing, and it’s built on deep historic roots in the city as the former home of the Walter Reed Army Medical Center.

Kerstin Hildebrandt, vice president of research administration at the Children’s National Research Institute, said the team at the Research & Innovation Campus is excited to maximize its potential by joining this global network of economic drivers that are enhancing their communities and cities.

“We look forward to sharing our best practices, and we want to learn about how our national and international colleagues are tackling complex issues,” she said. “For example, we can learn how others are leveraging their assets to improve their communities and their response to health crises, climate change and other significant challenges.”

The GNID was launched in March of last year by The Global Institute on Innovation Districts (GIID), an international nonprofit focused on the advancement of innovation districts. With an initial group of 23 districts. GIID is now expanding the network to include approximately 20 additional districts that extend across Europe, North America, Latin America, Australia and Asia.

GIID’s Founder Julie Wagner said innovation districts have become a worldwide phenomenon. She said their leaders are recognizing that working and collaborating with their peers — from Melbourne to Medellin — is a powerful strategy to help these complex geographies leverage their assets in new ways.

“We are finding that innovation districts are willing to execute impactful strategies after holding highly curated exchanges with their peers,” Wagner said. “These are the places armed to solve some of the world’s most vexing challenges. From where I sit, we all need to give them as many tools as possible to help them get there.”

Panel members at the NIAID symposium

CN-NIAID Symposium seeks ways to promote child health amid challenges

Panel members at the NIAID symposium

More than 30 million children seek emergency care each year, but 80 percent of these visits happen at hospitals that aren’t designed for pediatrics — a daunting figure during pandemics and other crises in healthcare. This considerable hurdle is one of many challenges that leaders in pediatric health came to discuss during a two-day symposium on promoting child health, hosted by Children’s National Hospital, the National Institute of Allergy and Infectious Diseases and the Pediatric Pandemic Network (PPN).

The symposium laid out a multitude of issues facing children and their doctors: growing mental health diagnoses, shrinking access to care in rural areas, asthma and eczema, winter respiratory surges and more.

Joelle Simpson, M.D., chief of emergency medicine at Children’s National and PPN principal investigator, said the network is drawing on expertise from 10 pediatric hospitals to ensure communities are better prepared for whatever challenges lie ahead, through training and support, collaboration among pediatric specialists, education on best practices and the promotion of equity and inclusion.

Built on a Health Resources and Services Administration grant, the network is focusing on four key areas: infectious disease and disease outbreaks, emergency and disaster management, mental and behavioral health, and health equity and community engagement. “This year, we know we are boiling the ocean as we come together,” Simpson said.

Miss the symposium? Check out the recordings available on YouTube, including the closing Q&A with many of the panelists and Sheryl Gay Stolberg, health policy reporter with the New York Times.

Day 1 of the 6th Annual Children’s National Hospital – NIAID Symposium

Day 2 of the 6th Annual Children’s National Hospital – NIAID Symposium

 

Screen grab of Dr. Terry Dean and Dr. Vittorio Gallo webinar

In the News: Regenerative brain cells and the circadian clock

Screen grab of Dr. Terry Dean and Dr. Vittorio Gallo webinar

“I am a pediatric intensivist, and I am very interested in some of the pathologies and conditions that I come across in the ICU. We hatched this question that revolved around the idea: what can we do for TBI (traumatic brain injury) patients to enhance their cellular regeneration? …  We looked at NG2-glia in particular, otherwise known as oligodendrocyte precursor cells. They are about 2-8% of the brain…. Do these cells respond to sleep and circadian rhythm? Is it a factor? Does it help? Does it hurt?”

Find out more about what Terry Dean, M.D., Ph.D., says he has learned about these and other questions through his recent research with interim Chief Academic Officer Vittorio Gallo, Ph.D. They join the Society for Neuroscience in a webinar on the circadian rhythms of these important brain cells and how their regeneration may be used someday to promote healing after brain injuries.

RNA molecule

New deep learning system helps scientists edit RNA

RNA molecule

The Children’s National team built DeepCas13 on a newer and less studied CRISPR platform, called CRISPR-Cas13d, which instead focuses on RNA.

Children’s National Hospital scientists have created a revolutionary machine-learning system that predicts the effects of changing ribonucleic acid (RNA) molecules using a gene-editing tool built on CRISPR technology.

Called DeepCas13, the system is among the world’s first deep-learning frameworks to recognize the challenges of editing RNA – and then applying data science and machine learning to solve the intricate problems that stem from modifying biological code. Details of the DeepCas13 system were published recently in Nature Communications.

Born from an international collaboration, DeepCas13 could provide the backbone for treatments for diseases based on errors in RNA, including debilitating neurodegenerative diseases such as Huntington’s disease and muscular dystrophy.

“I am an optimistic person, so I expect to have treatments within five to 10 years,” said Wei Li, Ph.D., principal investigator at the Center for Genetic Medicine Research at Children’s National. “Of course, there are going to be lots of obstacles. If we have a very good system, like DeepCas13, with very good performance that can generate treatments, the next problem is how we deliver the system to the right tissue in the patients.”

The big picture

Most research in this space has focused on a version of CRISPR – or Clustered Regularly Interspaced Short Palindromic Repeats – that edits DNA, called CRISPR-Cas9. The Children’s National team built DeepCas13 on a newer and less studied CRISPR platform, called CRISPR-Cas13d, which instead focuses on RNA. In doing so, researchers are opening the door to treating a host of disorders of RNA, given its biological role in coding, decoding, regulating and supporting gene expression.

DeepCas13 combines hundreds of thousands of data points with considerable computing power to help scientists target errant pieces of RNA, while minimizing any off-target changes that could damage the health of cells.

“We only want to target the RNA molecule that is causing diseases, and we don’t want the system to edit normal RNA,” said Xiaolong Cheng, Ph.D., a member of the Li lab and the first author of the study. “With DeepCas13, we can design highly efficient, and highly specific, rules.”

What’s ahead

The FDA has approved one method for delivering RNA treatments to cells, using a virus known as AAV or adeno-associated virus. So far, the gene therapy method has had limited applications. But Li and other researchers see the potential for life-changing treatments in the coming years, built on DeepCas13 and other advances.

The system was developed with partners from around the world, including the University of Illinois Urbana-Champaign and Northeastern University in Shenyang, China. It is open source and available for free to researchers looking for targets to treat RNA-related diseases.

Li says this international partnership is leading the way: “We tested our DeepCas13 model over other methods, and we confirmed that our method has the highest prediction accuracy.”

DeepCas13 was funded by grants from NIH and the Children’s National Research Institute.