Therapeutic antibiotics associated with reductions in microbial diversity in CF
There are more than 70,000 children and adults living with cystic fibrosis (CF) worldwide. Those with this progressive disease frequently suffer from recurrent episodes of lung infection and inflammation called pulmonary exacerbations.
In a new observational study led by Andrea Hahn, M.D., infectious diseases specialist at Children’s National Hospital, researchers found that both insufficient beta-lactam pharmacokinetics (PK) and broad-spectrum antibiotics were associated with a greater decrease in species richness at the end of antibiotic therapy compared to pulmonary exacerbations onset.
In prior studies evaluating the association between beta-lactam PK, insufficient beta-lactam PK was associated with reduced short-term decreases in microbial diversity compared to sufficient beta-lactam dosing. In this study researchers found that insufficient beta-lactam PK was associated with a greater short-term decrease in microbial diversity.
Dr. Hahn’s team also found that an increased presence of beta-lactam antibiotic resistance genes was associated with lower microbial diversity and lower lung function.
These studies suggest that community-level antibiotic resistance, rather than the resistance patterns of the most prevalent bacteria identified in cultures, may serve as a useful predictor of lung function recovery in individuals with cystic fibrosis (CF). This finding may aid clinicians in selecting the most effective antibiotics to treat pulmonary exacerbations in CF patients, thus enhancing their clinical outcomes.
Read the full study in Nature’s Scientific Reports.
Authors on the study from Children’s National Hospital include Andrea Hahn, M.D., M.S., Aszia Burrell, Hollis Chaney, M.D., Iman Sami-Zakhari, M.D., Anastassios Koumbourlis, M.D., M.P.H., and Robert J. Freishtat, M.D., M.P.H.