Posts

Baby in the NICU

Quality improvement initiative reduces vancomycin use in NICU

Baby in the NICU

A quality improvement initiative in the Neonatal Intensive Care Unit (NICU) at Children’s National Hospital led to a significant reduction in treatment with intravenous vancomycin, an antibiotic used for resistant gram positive infections, which is often associated with acute kidney injury.

A quality improvement initiative in the Neonatal Intensive Care Unit (NICU) at Children’s National Hospital led to a significant reduction in treatment with intravenous vancomycin, an antibiotic used for resistant gram positive infections, which is often associated with acute kidney injury. The findings, published in the journal Pediatrics, show the initiative reduced vancomycin use in patients by 66%, and the NICU has sustained the reduction for more than a year.

Vancomycin is a broad-spectrum antibiotic often used to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. It’s one of the most commonly prescribed antibiotics in NICUs, but its overuse poses an increased risk of morbidity. Benchmarking data showed that in 2017, vancomycin use at Children’s National Hospital was significantly higher than use at peer institutions, suggesting there was likely an opportunity to optimize use of this drug.

The intervention program was led by Rana Hamdy, M.D., M.S.C.E., M.P.H., an infectious diseases specialist at Children’s National, Lamia Soghier, M.D., medical unit director of the Children’s National NICU, and other team members from neonatologyinfectious diseases, pharmacy, nursing and quality improvement. The team accomplished the prescribing reduction by sequentially implementing a four-step approach involving interdisciplinary team building and provider education, pharmacist-initiated 48-hour time-outs, clinical pathway development and prospective audit with feedback.

“Our interdisciplinary quality improvement team was devoted to this project and implemented interventions that, early on, led not only to reduction in vancomycin use, but to better outcomes in our patients with fewer episodes of vancomycin-associated acute kidney injury,” said Dr. Hamdy. “This led to early buy-in from the prescribers, ultimately changing the culture of antibiotic prescribing in the NICU.”

Following the NICU’s intervention program to improve patient safety, vancomycin use in patients decreased from 112 days of therapy per 1,000 patient-days to 38 days of therapy per 1,000 patient-days. During the intervention program, the researchers noted that this was “the first work to show a significant change in vancomycin-associated acute kidney injury in neonates.”

Four key interventions were sequentially implemented to successfully achieve and sustain the reduction in vancomycin use. Intervention 1 was the development of an interdisciplinary and provider education team that addressed institutional antibiotic prescribing practices. Intervention 2, a pharmacist-initiated 48-hour time-out, involved clinical pharmacists identifying patients who have been on antibiotics for ≥ 48 hours and encouraged their providers to either discontinue vancomycin or to switch to a narrow-spectrum antibiotic. Intervention 3 consisted of the development of new clinical pathways including discontinuing vancomycin in infants at low risk for MRSA. Lastly, intervention 4, antimicrobial stewardship program (ASP) prospective audit and feedback, involved an ASP member reviewing all NICU vancomycin orders and issuing appropriate recommendations for NICU providers and pharmacists to be carried out within 24 hours.

This project was taken on as part of Children’s National Quality Improvement and Leadership Training (QuILT) course sponsored by the Quality & Safety Department. This notable work was highlighted in the 2019 annual Quality and Safety report and by the Magnet® program as an exemplary example of nursing-physician partnership working to improve patient care.

The associated article, “Reducing Vancomycin Use in a Level IV Neonatal Intensive Care Unit,” will be published July 1 in Pediatrics. The lead author is Dr. Rana Hamdy, an infectious diseases specialist and director of the Antimicrobial Stewardship Program. Twenty notable co-authors are also from Children’s National.

Staphylococcus

How our bladder’s microbiota affect health

Staphylococcus

The presence of bacteria such as Staphylococcus in the urine is linked to the incidence and severity of urge urinary incontinence as well as treatment success.

About half of the cells in our bodies aren’t really “ours” at all. They’re the microbiota: The vast array of microorganisms that live in our gut, skin, oral cavity and other places. Decades ago, researchers thought that these organisms simply happened to colonize these areas, playing only a tangential role in health, for example, helping to break down food in the intestines or causing cavities. More recent work has revealed the incredibly complex role they play in diseases ranging from diabetes and schizophrenia.

The bladder is no exception. Just a single decade ago, the bladder was thought to be a sterile environment. But that view has shifted radically, with more sensitive cultivation methods and precise 16S rRNA gene-sequencing techniques revealing a significant bladder microbiome that could have an enormous impact on pediatric urologic diseases. These findings have opened brand new fields of research aimed at clarifying the role that the bladder’s microbiome plays in common urological diseases that affect children, according to a review article published online Feb. 22, 2018, by Current Urology Reports.

“There is a growing appreciation for the role of diverse bacteria in contributing to improved health as well as triggering disease processes or exacerbating illness,” says Michael H. Hsieh, M.D., Ph.D., director of the Clinic for Adolescent and Adult Pediatric Onset Urology (CAPITUL) at Children’s National Health System and study senior author. “Already, we know that probiotics and dietary modifications have the potential to play powerful roles in preventing urinary diseases that commonly occur among pediatric patients,” Dr. Hsieh says. This underscores the importance of conducting even more studies to improve our understanding and to identify new therapies for health conditions that resist current treatment options.”

The review conducted by Dr. Hsieh and co-authors highlights the effects of the microbiome on a number of urologic diseases that affect children, including:

  • Urinary tract infection A number of studies point to the association between decreased microbial diversity and the incidence of what is commonly called urinary tract infection (UTI) or “dysbiosis.” This relationship suggests that using probiotics to replace or supplement antibiotics could favorably alter the urinary microbiome. Future research will focus on the pathophysiological role of the microbiome to determine whether it can be manipulated to prevent or treat UTIs.
  • Urge urinary incontinence While data vary by study, the presence of bacteria in the urine, especially certain bacterial species – such as Gardnerella, Staphylococcus, Streptococcus, Actinomyces, Aerococcus, Corynebacterium and Oligella – are linked to the incidence and severity of urge urinary incontinence (UUI) as well as treatment success. Most studies find an association between greater genitourinary biodiversity and reduced incidence and lessened severity of UUI as well as improved treatment response. Future research will focus on further clarifying this relationship.
  • Urolithiasis Calcium oxalate stones, the most common type of kidney stone, have a microbiome that differs from the urinary microbiome leading researchers to question whether the stone’s own bacterial makeup could help to predict recurrence of future kidney stones. What’s more, Oxalobacter formigenes, a gram-negative bacterium, lowers oxalate levels in the blood and are associated with a 70 percent reduction in the risk of kidney stones forming. In an experimental model, fecal transplants with the full microbiome represented had a pronounced and persistent effect on oxalate production. Patients who receive some antibiotics often have reduced rates of formigenes colonization. However, the bacteria are resistant to amoxicillin, augmentin, ceftriaxone and vancomycin, which could point to preferential use of these antibiotics to stave off disease and ward off kidney stone formation.

Additional authors include Daniel Gerber, study lead author, The Georgetown University School of Medicine and Health Sciences; and Catherine Forster, M.D., study co-author, Children’s National.