Tag Archive for: van den Anker

Pediatric Device Innovators Forum explores state of focused ultrasound

For children living with pediatric tumors, less invasive and less painful treatment with no radiation exposure was not always possible. In recent years, the development of technologies like Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) and Low intensity transcranial focused ultrasound (LIFU) is helping to reverse that trend.

This topic was the focus of the recent Pediatric Device Innovators Forum (PDIF) hosted by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI) in partnership with the U.S. Food and Drug Administration’s (FDA) Pediatric Device Consortia (PDC) grant program. A collaboration between Children’s National Hospital and University of Maryland Fischell Institute for Biomedical Devices, NCC-PDI is one of five PDCs funded by the FDA to support pediatric device innovators in bringing more medical devices to market for children.

The discussion, moderated by Kolaleh Eskandanian, Ph.D., MBA, PMP, vice president and chief innovation officer at Children’s National and principal investigator of NCC-PDI, explored the use of focused ultrasound’s noninvasive therapeutic technology for two pediatric indications, Osteoid Osteoma (OO) and Diffuse Intrinsic Pontine Glioma (DIPG), and the ways it can increase the quality of life for pediatric patients while also decreasing the cost of care.

The discussion also examined the most common barriers preventing more widespread implementation of focused ultrasound technology, specifically small sample size for evidence generation, lack of funding opportunities and reimbursement issues that can make or break a technology’s chances at reaching the patients that need it.

Karun Sharma, M.D., director of Interventional Radiology at Children’s National, emphasized the potential for focused ultrasound to treat localized pain relief and treat other diseases that, like OO, do not have any other therapeutic alternative

“At Children’s National, we use MR-HIFU to focus an ultrasound beam into lesions, usually tumors of the bone and soft tissues, to heat and destroy the harmful tissue in that region, eliminating the need for incisions,” says Sharma. “In 2015, Children’s National doctors became the first in the U.S. to use MR-HIFU to treat pediatric osteoid osteoma (OO), a painful, but benign, bone tumor that commonly occurs in children and young adults. The trial demonstrated early success in establishing the safety and feasibility of noninvasive MR-HIFU in children as an alternative to current, more invasive approaches to treat these tumors.”

In November 2020, the FDA approved this MR-HIFU system to treat OO in pediatric patients.

Roger Packer, M.D., senior vice president of the Center for Neuroscience and Behavioral Medicine at Children’s National, also discussed how focused ultrasound, specifically LIFU, has also proven to be an attractive modality for its ability to non-invasively, focally and temporarily disrupt the blood brain barrier (BBB) to allow therapies to reach tumors that, until recently, would have been considered unreachable without severe intervention.

“This presents an opportunity in pediatric care to treat conditions like Diffuse Intrinsic Pontine Glioma (DIPG), a highly aggressive brain tumor that typically causes death and morbidity,” says Packer.

Packer is planning a clinical trial protocol to investigate the safety and efficacy of LIFU for this pediatric indication.

The forum also featured insight from Jessica Foley, M.D., chief scientific officer, Focused Ultrasound Foundation; Arjun Desai, M.D., chief strategic innovation officer, Insighttec; Arun Menawat, M.D., chairman and CEO, Profound Medical; Francesca Joseph, M.D., Children’s National; Johannes N. van den Anker, M.D., Ph.D., vice chair of Experimental Therapeutics, Children’s National; Gordon Schatz, president, Schatz Reimbursement Strategies; Mary Daymont, vice president of Revenue Cycle and Care Management, Children’s National; and Michael Anderson, MD, MBA, FAAP, FCCM, FAARC, senior advisor to US Department of Health and Human Services (HHS/ASPR) and Children’s National.

Anthony Sandler, M.D., senior vice president and surgeon-in-chief of the Joseph E. Robert Jr. Center for Surgical Care and director of the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital, and Sally Allain, regional head of Johnson & Johnson Innovation, JLABS @ Washington, DC, opened the forum by reinforcing both organizations’ commitment to improving pediatric health.

In September 2020, the Focused Ultrasound Foundation designated Children’s National Hospital as the first global pediatric Center of Excellence for using this technology to help patients with specific types of childhood tumors. As a designated COE, Children’s National has the necessary infrastructure to support the ongoing use of this technology, especially for carrying out future pediatric clinical trials. This infrastructure includes an ethics committee familiar with focused ultrasound, a robust clinical trials research support team, a data review committee for ongoing safety monitoring and annual safety reviews, and a scientific review committee for protocol evaluation.

The Pediatric Device Innovators Forum is a recurring collaborative educational experience designed by the FDA-supported pediatric device consortia to connect and foster synergy among innovators across the technology development ecosystem interested in pediatric medical device development. Each forum is hosted by one of the five consortia. This hybrid event took place at the new Children’s National Research and Innovation Campus, the first-of-its-kind focused on pediatric health care innovation, on the former Walter Reed Army Medical Center campus in Washington, D.C.

To view the latest edition of the forum, visit the NCC-PDI website.

Panelists at the Pediatric Device Innovators Forum

The recent Pediatric Device Innovators Forum (PDIF) exploring the state of focused ultrasound was held at the new Children’s National Research and Innovation Campus, a first-of-its-kind focused on pediatric health care innovation.

Replacing morphine with methadone in the NICU

morphine vial and needle

A synthetic analgesic drug, known as methadone, may serve as a better alternative for newborns in the neonatal intensive care unit (NICU) suffering from opioid withdrawal syndrome, according to a commentary published in Pediatric Research.

A synthetic analgesic drug, known as methadone, may serve as a better alternative for newborns in the neonatal intensive care unit (NICU) suffering from opioid withdrawal syndrome, according to a commentary published in Pediatric Research. Some existing literature suggests that methadone may also address painful stimuli that hinders neurodevelopment throughout adulthood, added Johannes van den Anker, M.D., Ph.D., division chief of Clinical Pharmacology at Children’s National Hospital.

The commentary was selected as the Editor’s Focus in Pediatric Research for the June editionsignaling the scientific community as noteworthy to further explore methadone’s potential as an alternative for pharmacologic treatments instead of morphine.

“It is important to define the pharmacokinetics and pharmacodynamics of methadone to treat pain in neonates in intensive care before replacing morphine with methadone. Pre-clinical research shows that the use of methadone might have fewer side effects than morphine,” said Dr. van den Anker. “If this is also the case in the human neonate, then a shift from morphine to methadone might be beneficial. However, first, we need to define what the safe and effective dose of methadone will be for this purpose.”

While there is a need to better understand how newborns and preemies metabolize methadone, there is existing knowledge that this drug minimizes pain. The commentary, too, raises the question for clinicians to possibly consider methadone as a better option to avoid long-term negative neurodevelopmental consequences — such as hypersensitivity to re-injury in later life — usually associated with pain.

The current but limited data out there still provides “exciting and stimulating” information about the possible use of methadone for the treatment of neonatal pain in the NICU, according to Dr. van den Anker. He believes that, in the future, methadone could also serve as mechanism-based analgesia in newborns experiencing pain.

“There needs to be a collaboration between neonatal medicine specialists, pharmacometricians and developmental pharmacologists to assure not only the generation of evidence-based data to determine these optimal dosing regimens, but also to facilitate the implementation of this new knowledge into daily clinical care in neonatal intensive care units across the globe,” added Dr. van den Anker.

Dr. Johannes van den Anker awarded 2019 Sumner J. Yaffe Lifetime Achievement Award

Johannes Van den Anker

Johannes van den Anker, M.D., Ph.D., division chief of Clinical Pharmacology and vice chair of Pediatrics for Experimental Therapeutics at Children’s National Health System, has been selected to receive the 2019 Sumner J. Yaffe Lifetime Achievement Award in Pediatric Pharmacology and Therapeutics by the Pediatric Pharmacy Advocacy Group (PPAG). Given annually, the Yaffe Award was established in 2002 by the PPAG Board of Directors and recognizes individuals with significant and sustained contributions toward the improvement of children’s health through the field of pediatric pharmacology and therapeutics.

Dr. van den Anker was selected as this year’s recipient for his contributions to the field of pediatric pharmacology and therapeutics, which have expanded and enhanced medical knowledge about the use of drugs in children and about the treatment of disease. He has also played an integral role in training the next generation of clinical pharmacists and pharmacologists.

“This award means a lot to me as it recognizes the importance of the field I am so passionate about and to which I have dedicated my career,” says Dr. van den Anker.

Dr. van den Anker joined Children’s National in 2002 and has become a leader in the discipline of pediatric pharmacology and therapeutics with significant contributions to research in this field. Some of his work includes changes in the dosing guidelines for frequently used antibacterial agents in newborns, the optimization of the dosing of pain medications in newborns and young infants and studies addressing the pharmacology of drugs in obese pediatric and adolescent patients.

“I am excited about being the 2019 recipient of this award” Dr. van den Anker says, “I am enthusiastic about future developments in the field of pediatric pharmacology and therapeutics with multiple ongoing studies with my colleagues, ranging from antibiotic dosing to the management of muscular dystrophy with novel drugs.”

The award will be presented at the 28th PPAG Annual Meeting on Friday, April 12 in Oklahoma City, OK., where he will also present the 2019 Yaffe Award Lecture to the attendees. The title of his lecture is “The Evolution of Neonatal Pharmacology and Therapeutics:  A Story of Resistance, Resilience and Revelation”.

Congratulations to Dr. Johannes van den Anker for this highly deserved honor!

New network will advance treatments for children

Doctors-working-with-Digital-Tablet

Three leaders from Children’s National Health System are among the investigators of a new FDA-funded program created to launch a global clinical trials network. The initial $1 million grant from the Food and Drug Administration (FDA) establishes a network among the Institute for Advanced Clinical Trials for Children (I-ACT for Children), the National Capital Consortium for Pediatric Device Innovation (NCC-PDI) (affiliated with Children’s National), PEDSnet, the James M. Anderson Center for Health Systems Excellence and the Critical Path Institute, to address the unmet medical needs of children by improving quality and efficiency in developing innovative pediatric drugs and devices.

Along with the fiscal 2017 funds, there is a potential for $1 million in funding each year for an additional four years to I-ACT for Children, contingent on annual appropriations and the availability of funding. I-ACT for Children is a new independent, nonprofit organization that works to improve the planning and completion of pediatric clinical trials. PEDSnet and the Anderson Center will serve as the network’s data and learning core, while the Critical Path Institute will serve as the regulatory science core and NCC-PDI will serve as the medical device core.

From Children’s National, the investigators include: Peter Kim, M.D., Ph.D., vice president of the Sheikh Zayed Institute for Pediatric Surgical Innovation; Kolaleh Eskandanian, Ph.D., executive director of the Sheikh Zayed Institute and NCC-PDI and Johannes van den Anker, M.D., Ph.D., division chief of Clinical Pharmacology and vice chair of Experimental Therapeutics.

“We are pleased that this grant addresses innovative reengineering of the pediatric device trials system,” says Eskandanian. “In contrast with drug trials, device trials are generally less optimally understood in academic medical centers and clinical sites.”

She explains that children have medical device needs that are considerably different from adults. Designing devices for children requires considerations such as growth and development, anatomical and physiological differences. Often, the lack of available devices for children forces clinicians to use an adult device off-label or to improvise. Off-label use may be the only option, but such use can bring risks of serious adverse events that could be avoided if there were more FDA–approved pediatric devices.

“Thanks to partnership with I-ACT we will be able to address the pressing need to improve clinical trials and post-market monitoring of pediatric devices,” says Eskandanian.

Leading the network as principal investigator is Edward Connor, M.D., president of I-ACT for Children and an emeritus professor of Pediatrics, Microbiology, Immunology, and Tropical Medicine at George Washington University School of Medicine and Children’s National.

Work has been initiated to integrate network components and engage public and private shareholders. Next steps include selecting priority projects for implementation in 2018 and beyond, and scaling the network in North America and abroad.

Funding for this work was made possible, in part, by the Food and Drug Administration through grant 1 U18 FD 006297. Views expressed in written materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

Biomarkers sensitive to daily corticosteroid use

Using a mass spectrometer, Yetrib Hathout, Ph.D., is able to quantify 3,000 to 4,000 proteins from a tissue sample to identify proteins associated with cancer.

Using a Somascan proteomics assay – which simultaneously analyzes 1,129 proteins in a small volume of serum – a team led by Children’s National Health System researchers identified 21 biomarkers that respond to corticosteroids taken daily by children with Duchenne muscular dystrophy (DMD) and inflammatory bowel disease.

Corticosteroids are commonly prescribed to treat inflammatory conditions. High daily doses of corticosteroids are considered the standard of care for DMD, a type of muscular dystrophy characterized by worsening muscle weakness that affects 1 in 3,600 male infants. However, depending on the age of the child and drug dosage, chronic use is associated with such side effects as changes in bone remodeling that can lead to stunted growth, weight gain, facial puffiness caused by fat buildup, mood changes, sleep disturbances, and immune suppression. The research team sought to identify blood biomarkers that could be leveraged to create a fast, reliable way to gauge the safety and efficacy of corticosteroid use by children. The biomarkers also could guide development of a replacement therapy with fewer side effects.

“Ten pro-inflammatory proteins were elevated in untreated patients and suppressed by corticosteroids (MMP12, IL22RA2, CCL22, IGFBP2, FCER2, LY9, ITGa1/b1, LTa1/b2, ANGPT2 and FGG),” Yetrib Hathout, Ph.D., Proteomic Core Director at Children’s National, and colleagues write in the journal Scientific Reports. “These are candidate biomarkers for anti-inflammatory efficacy of corticosteroids.”

The blood biomarkers sensitive to corticosteroids fit into three broad groups, according to the authors. The children taking corticosteroids were matched with children of the same age who had never taken the medicine. Five biomarkers significantly increased in this corticosteroid-naïve group and decreased in kids prescribed corticosteroids. The biomarkers generally were inflammatory proteins and included chemokine, insulin-like growth factor binding protein 2, and integrin alpha-I/beta-1 complex.

The second group of biomarkers included nine proteins associated with macrophage and T-lymphocytes that were significantly reduced in concentration in kids taking corticosteroids. According to the study, this finding hints at corticosteroids blunting the ability of the immune system’s most able fighters to respond to infection.

In the third group were five proteins that were significantly increased by corticosteroid treatment in DMD and included matrix metalloproteinase 3, carnosine dipeptidase 1, angiotensinogen, growth hormone binding protein, insulin, and leptin, a hormone linked to appetite.

What researchers learned with this study will help them more accurately design the next phase of the work, Hathout says.

“We are the first team to report a number of novel discoveries, including that growth hormone binding protein (GHBP) levels increase with corticosteroid use. This represents a candidate biomarker for stunted growth. In order to use that new information effectively in drug development, the next studies must corroborate the role of serum GHBP levels as predictors of diminished stature,” he adds. “The study finding that four adrenal steroid hormones are depressed in kids taking corticosteroids raises additional questions about the broader impact of adrenal insufficiency, including its role in the delay of the onset of puberty.”

This work was supported by National Institutes of Health grants (R01AR062380, R01AR061875, P50AR060836, U54HD071601, K99HL130035, and R44NS095423) and Department of Defense CDMRP program grant W81XWH-15-1-0265. Additional support was provided by AFM-Telethon (18259) and the Muscular Dystrophy Association USA (MDA353094).