Tag Archive for: speech

newborn in incubator

A bronchopulmonary dysplasia primer to guide clinicians and researchers

newborn in incubator

Six months in the writing, the “Bronchopulmonary Dysplasia Primer” published recently by Nature Reviews will be the gold standard review on this topic for years to come.

The term bronchopulmonary dysplasia, or BPD, was first coined in 1967 to describe a chronic lung disease of preterm newborns after treatment with supplemental oxygen via mechanical ventilation in an effort to save their lives. Back then, infants had 50-50 odds of surviving.

In the intervening years, survival has improved and the characteristics of BPD have evolved. Now, BPD is the most common complication of preterm birth for infants born at fewer than 28 weeks’ gestation, as more and more newborns survive premature birth. Hence, the primer.

“The contributing authors are some of the biggest thinkers on this topic,” says Robin H. Steinhorn, M.D., senior vice president, Center for Hospital-Based Specialties, at Children’s National Hospital and author of the section about BPD diagnosis, screening and prevention. “This document will guide clinical education and investigators in the field of BPD. I anticipate this will be the definitive review article on the subject for the next several years.”

Gestational age and low birth weight remain the most potent predictors of BPD. Some 50,000 extremely low gestational age newborns are born each year in the U.S. About 35% will develop some degree of BPD, according to the primer authors.

These newborns are introduced to life outside the womb well before their lungs are ready. Indeed, the pulmonary surfactants needed for normal lung function – a complex mixture of phospholipids that reduce surface tension within the lungs – don’t differentiate until late in pregnancy. Infants who persistently need respiratory support after the 14th day of life are at the highest risk of being diagnosed with BPD at 36 weeks, the coauthors note.

A number of complicating factors can come into play, including maternal diet; fetal exposure to maternal smoking and infection; structural issues such as pre-eclampsia; acute injury from mechanical ventilation and supplemental oxygen; as well as the body’s halting efforts to repair injured, inflamed lung tissue.

“The good news is the number of the smallest and youngest preterm infants who survive extreme preterm birth has steadily increased. Neonatal intensive care units, like our award-winning NICU, now routinely care for babies born at 22 weeks’ gestation,” Dr. Steinhorn says.

Treatment strategies include:

  • Reducing exposure to intubation and ventilation.
  • Leveraging respiratory stimulants, like caffeine.
  • Postnatal steroid therapy.

“Children’s National Hospital is the only center in our immediate region that provides comprehensive care for infants and children with severe BPD,” Dr. Steinhorn adds. “As the population of vulnerable and fragile infants has grown, we have invested in the equipment and the personnel – including at the Hospital for Sick Children Pediatric Center (HSC) – to create a very safe and supportive environment that improves survival and quality of life.”

Some preterm infants spend their first 9 to 10 months of life at Children’s National, and their days are filled with concentrated physical, occupational and speech therapy, as well as music and play therapy to hasten their rehabilitation.

Once their medical condition stabilizes, they transition to HSC to focus more intently on rehabilitation.

“We see HSC as filling a very important role in their care. When our children graduate to HSC, they are going for ongoing care of their lung disease, but also their ongoing rehabilitation. At HSC, they focus on creating the most normal life that we can possibly create and, over time, that is a life free of ventilators and tracheostomy tubes.”

In addition to Dr. Steinhorn, BPD Primer co-authors include Bernard Thébaud, Children’s Hospital of Eastern Ontario; Kara N. Goss, University of Wisconsin-Madison; Matthew Laughon, The University of North Carolina at Chapel Hill; Jeffrey A. Whitsett and Alan H. Jobe, Cincinnati Children’s Hospital Medical Center; Steven H. Abman, Children’s Hospital Colorado;  Judy L. Aschner, Joseph M. Sanzari Children’s Hospital; Peter G. Davis, The Royal Women’s Hospital; Sharon A. McGrath- Morrow, Johns Hopkins University School of Medicine; and Roger F. Soll, University of Vermont.

Financial support for the research described in this post was provided by the National Institutes of Health under grant Nos. U01HL122642, U01HL134745, RO1HL68702, R01HL145679, U01HL12118-01 and K24 HL143283; the Australian National Health and Medical Research Council; the Canadian Institute for Health Research; Stem Cell Network and the Ontario Institute for Regenerative Medicine.

Bella when she was sick

Preserving brain function by purposely inducing strokes

Bella when she was sick

Born to young parents, no prenatal testing had suggested any problems with Bella’s brain. But just a few hours after birth, Bella suffered her first seizure – one of many that would follow in the ensuing days. After brain imaging, her doctors in Iowa diagnosed her with hemimegalencephaly.

Strokes are neurologically devastating events, cutting off life-sustaining oxygen to regions of the brain. If these brain tissues are deprived of oxygen long enough, they die, leading to critical loss of function – and sometimes loss of life.

“As physicians, we’re taught to prevent or treat stroke. We’re never taught to inflict it,” says Taeun Chang, M.D., director of the Neonatal Neurology and Neonatal Neurocritical Care Program at Children’s National Hospital.

That’s why a treatment developed at Children’s National for a rare brain condition called hemimegalencephaly is so surprising, Dr. Chang explains. By inflicting controlled, targeted strokes, Children’s National physician-researchers have treated five newborns born with intractable seizures due to hemimegalencephaly before they’re eligible for epilepsy surgery, the standard of care. In the four surviving infants, the procedures drastically reduced or completely relieved the infants of hemimegalencephaly’s characteristic, uncontrollable seizures.

The most recent patient to receive this life-changing procedure is Bella, a 13-month-old from Iowa whose treatment at Children’s National began within her second week of life. Born to young parents, no prenatal testing had suggested any problems with Bella’s brain. But just a few hours after birth, Bella suffered her first seizure – one of many that would follow in the ensuing days. After brain imaging, her doctors in Iowa diagnosed her with hemimegalencephaly.

A congenital condition occurring in just a handful of children born worldwide each year, hemimegalencephaly is marked by one brain hemisphere growing strikingly larger and dysplastic than the other, Dr. Chang explains. This abnormal half of the brain is highly vascularized, rippled with blood vessels needed to support the seizing brain. The most conspicuous symptoms of hemimegalencephaly are the numerous seizures that it causes, sometimes several in the course of an hour, which also may prevent the normal half of the brain from developing and learning.

Prior studies suggest early surgery achieves better developmental outcomes with one study reporting as much as a drop of 10-20 IQ points with every month delay in epilepsy surgery.

The standard treatment for unilateral megalencephaly is a dramatic procedure called a hemispherectomy, in which surgeons remove and disconnect the affected half of the brain, allowing the remaining half to take over its neurological duties. However, Dr. Chang says, implementing this procedure in infants younger than 3 months of age is highly dangerous.  Excessive, potentially fatal blood loss is likely in infants younger than 3 months who have a highly vascularized brain in the setting of an immature coagulation system. That leaves their doctors with no choice but to wait until these infants are at least 3 months old, when they are more likely to survive the surgery.

However, five years ago, Dr. Chang and her colleagues came up with a different idea when a newborn continued to have several seizures per hour despite multiple IV seizure medications: Because strokes cause irreversible tissue death, it might be possible to effectively incapacitate the enlarged hemisphere from within by inflicting a stroke on purpose. At the very least, this “functional embolization” might buy time for a traditional hemispherectomy, and slow or halt ongoing brain damage until the infants are able to withstand surgery. Ideally, this procedure may be all some children need, knocking out the offending hemisphere completely so they’d never need a hemispherectomy, which has late complications, such as hydrocephalus.

A pediatrician friend of Bella’s paternal grandparents read a story on Children’s National website about Darcy, another baby who’d received functional embolization a year earlier and was doing well. She contacted Dr. Chang to see if the procedure would be appropriate for Bella.

Within days, Bella and her family headed to Washington, D.C., to prepare for functional embolization herself. Within the first weeks of life, Bella underwent three separate procedures, each three to four hours long. Under real-time fluoroscopic and angiographic guidance, interventional neuroradiologist Monica Pearl, M.D., threaded a micro-catheter up from the baby’s femoral artery through the complex network of blood vessels all the way to her brain. There, in targeted branches of her cerebral arteries, Dr. Pearl strategically placed liquid embolic agent to obstruct blood flow to the abnormal half of Bella’s brain.

Immediately after the first procedure, the team had to contend with the same consequences that come after any stroke: brain swelling that can cause bleeding and herniation, complicated further by the already enlarged hemisphere of Bella’s brain. Using neuroprotective strategies learned from treating hundreds of brain-injured newborns, the neonatal neurocritical care team and the neonatal intensive care unit (NICU) minimized the brain swelling and protected the normal half of the brain by tightly controlling the brain temperature, her sugar and electrolyte levels, her blood pressure and coagulation system.

As the brain tissue in the oversized hemisphere died, so did the seizures that had plagued Bella since birth. She has not had a seizure since she left Children’s National more than one year ago. Her adoptive parents report that Bella is hitting many of the typical developmental milestones for her age: She’s getting ready to walk, blowing kisses and saying a few words. Physical, speech and occupational therapy will keep her moving in the right direction, Dr. Chang says.

“We believe that Children’s National is the only place in the world that’s treating newborns in this way to preserve their futures,” Dr. Chang says. “We’re privileged to be able to care for Bella and other kids with this rare condition.”

Bella’s transfer and successful procedures required the support and collective efforts of many within the hospital organization including William D. Gaillard, M.D., and his surgical epilepsy team; interventional neuroradiology with Dr. Monica Pearl; Neurosurgery; Neonatology and the NICU; social work; and even approval from Robin Steinhorn, M.D., senior vice president of the Center for Hospital-Based Specialties, and David Wessel, M.D., executive vice president and Chief Medical Officer.

“While obvious credit goes to the medical team who saved Bella’s future and the neonatal intensive care nurses who provided exceptional, intensive, one-on-one care, Bella’s team of supporters extend to all levels within our hospital,” Dr. Chang adds.

Also read:

Mark Batshaw

40 years, 8 editions: Writing “Children With Disabilities”

Mark Batshaw

Forty years ago, Mark L. Batshaw, M.D., almost singlehandedly wrote a 23-chapter first edition that ran about 300 pages. Now Dr. Batshaw’s tome, “Children With Disabilities,” is in its eighth edition, and this new volume is almost 1,000 pages, with 42 chapters, two co-editors and over 35 authors from Children’s National.

Back in 1978, Mark L. Batshaw, M.D., was a junior faculty member at John’s Hopkins University School of Medicine. In the evenings he taught a course in the university’s School of Education  titled “The Medical and Physical Aspects of the Handicapped Child,” for Master’s level special education students. Because no textbook at that time focused on that specific topic, Batshaw developed his own slide set.

“At the end of the first year of teaching the course my students said ‘You really ought to consider writing a text book based on your slides to help us move forward,’ ” Dr. Batshaw recalls. The father of three carved out time by writing on weekends and at night, cutting back on sleep.

His first goal was to create a textbook that would serve as a curriculum for a series of courses that would be taught at universities to specialists who work with children with disabilities, including social workers, physical and occupational therapists, speech and language pathologists, special education teachers, nurses, doctors and dentists.

“I wanted to cover the whole range of disabilities and divided the book initially into a series of sections, including embryology, to help students understand what can go wrong in fetal development to lead to a developmental disability; and chapters on each developmental disability, including autism, attention-deficit/hyperactivity disorder (ADHD), cerebral palsy, learning disabilities and traumatic brain injury,” he says. “The third section was devoted to available treatments, including occupational and physical therapy, speech language therapy, nutrition and medications. The final section focused on outcomes.”

His second aim was for the book to serve as a reference text for professionals in the field. The 33-year-old contacted a brand-new new publisher, Paul H. Brookes Publishing Co., that focused on special education. “They took a chance on me, and I took a chance on them,” he says.

Forty years ago, he almost singlehandedly produced a 23-chapter first edition that ran about 300 pages. Now Dr. Batshaw’s tome is in its eighth edition, and this new volume is almost 1,000 pages. And, rather than being its sole author, Dr. Batshaw enlisted two co-editors and at least five dozen authors who contributed specialty expertise in genetic counseling, social work, physical and occupational therapy, medicine and nursing. His daughter, Elissa, a special education teacher and school psychologist, authored a chapter about special education services, and his son, Drew, an executive at a start-up company, contributed autobiographical letters about the effect ADHD has had on his life.

The book, “Children With Disabilities,” also includes:

  • A glossary of medical terms so that as the reader reviews patient reports they can easily look up an unfamiliar term
  • An appendix on commonly used drugs to treat children with disabilities in order to look up the medicine by name and see the range of doses
  • An appendix devoted to different syndromes children might have
  • A reference section with organizations and foundations that help children with disabilities
  • A web site with sections designed for students and other content designed for teachers with thought questions to guide practical use of information in each chapter and more than 450 customizable PowerPoint slides for download
  • Call-out boxes for interdisciplinary team members, such as genetic counselors, explaining the roles they serve and their educational background, and
  • Excerpts of recent research articles.

“The students say they don’t sell the book. Usually when students have a textbook, they try to sell it second hand after the course ends,” explains Dr. Batshaw, now Executive Vice President, Physician-in-Chief and Chief Academic Officer at Children’s National. “Instead, students keep it and use it as a practical reference as they become professionals in their field. It has had the impact I had hoped for both as a textbook and a reference book: They say they refer to it when they have patients with a particular disorder they’re not used to treating to read up on it.”

Now a bestseller, there are more than 200,000 copies in print, including Portuguese and Ukrainian translations. “It didn’t start that way. It grew organically,” he says.

In addition to Dr. Batshaw, Children’s contributors to “Children With Disabilities” include Nicholas Ah Mew, M.D., pediatric geneticist; Nickie N. Andescavage, M.D., neonatologist; Mackenzie E. Brown, D.O., fellow in Pediatric Rehabilitation Medicine; Justin M. Burton, M.D., chief, Division of Pediatric Rehabilitation Medicine; Gabrielle Sky Cardwell, BA, clinical research assistant; Catherine Larsen Coley, PT, DPT, PCS, physical therapist; Laurie S. Conklin, M.D., pediatric gastroenterologist; Denice Cora-Bramble, M.D., MBA, executive vice president and chief medical officer; Heather de Beaufort, M.D., pediatric ophthalmologist; Dewi Frances T. Depositario-Cabacar, M.D., pediatric neurologist; Lina Diaz-Calderon, M.D., fellow in Pediatric Gastroenterology; Olanrewaju O. Falusi, M.D., associate medical director of municipal and regional affairs, Child Health Advocacy Institute; Melissa Fleming, M.D., pediatric rehabilitation specialist; William Davis Gaillard, M.D., chief Division of Epilepsy, Neurophysiology and Critical Care; Satvika Garg, Ph.D., occupational therapist; Virginia C. Gebus, R.N., MSN, APN, CNSC, nutritionist; Monika K. Goyal, M.D., MSCE, assistant chief, Division of Emergency Medicine; Andrea Gropman, M.D., chief, Division of Neurodevelopmental Pediatrics and Neurogenetics, geneticist and Neurodevelopmental pediatrician; Mary A. Hadley, BS, senior executive assistant; Susan Keller, MLS., MS-HIT, research librarian; Lauren Kenworthy, Ph.D., director, Center for Autism Spectrum Disorders; Monisha S. Kisling, MS, CGC, genetic counselor; Eyby Leon, M.D., pediatric geneticist; Erin MacLeod, Ph.D., RD, LD, director, Metabolic Nutrition; Margaret B. Menzel, MS, CGC, genetic counselor; Shogo John Miyagi, Ph.D., PharmD, BCPPS, Pediatric Clinical Pharmacology fellow; Mitali Y. Patel, DDS, program director, Pediatric Dentistry; Deborah Potvin, Ph.D., neuropsychologist; Cara E. Pugliese, Ph.D., clinical psychologist; Khodayar Rais-Bahrami, M.D., neonatologist and director, Neonatal-Perinatal Medicine Fellowship Program; Allison B. Ratto, Ph.D., clinical psychologist; Adelaide S. Robb, M.D., chief, Division of Psychiatry and Behavioral Sciences; Joseph Scafidi, D.O., neonatal neurologist; Erik Scheifele, D.M.D., chief, Division of Oral Health; Rhonda L. Schonberg, MS, CGC, genetic counselor; Billie Lou Short, M.D., chief, Division of Neonatology; Kara L. Simpson, MS, CGC, genetic counselor; Anupama Rao Tate, D.M.D., MPH, pediatric dentist; Lisa Tuchman, M.D., MPH, chief, Division of Adolescent and Young Adult Medicine; Johannes N. van den Anker, M.D., Ph.D., FCP, chief, Division of Clinical Pharmacology, Vice Chair of Experimental Therapeutics; Miriam Weiss, CPNP-PC, nurse practitioner; and Tesfaye Getaneh Zelleke, M.D., pediatric neurologist.

little girl with spina bifida

Oral clefts may stem from a shared genetic cause as neural tube defects

little girl with spina bifida

Research by an international team that includes Children’s National faculty, published online Jan. 25, 2019 in Human Molecular Genetics, suggests that genetic mutations that cause cleft lip and palate also may contribute to neural tube defects, such as spina bifida.

Oral clefts are some of the most common birth defects worldwide, affecting about one in every 700 births. In the U.S., more than 4,000 babies are born each year with cleft lip, with or without cleft palate.

This defect isn’t simply a cosmetic manner: Oral clefts can severely affect feeding, speech and hearing, and they cause about 3,300 deaths annually worldwide.

To better understand these conditions, researchers have isolated a number of genetic mutations that appear to play contributing roles. These include those in a gene known as Interferon Regulatory Factor 6. New research by an international team that includes Children’s National faculty, published online Jan. 25, 2019 in Human Molecular Genetics, suggests that these mutations also may contribute to neural tube defects such as spina bifida.

In the first weeks of fetal development, the neural plate curves, creating a neural tube that, once fused shut, becomes the fetal brain and fetal spinal cord. Neural tube defects, which can range from mild to severe, are characterized by incomplete development of the brain, spinal cord or meninges. These defects can potentially result in paralysis or even fetal or neonatal demise. According to the National Institutes of Health, spina bifida, which affects the spinal cord, is the most common neural tube defect in the U.S., affecting up to 2,000 infants each year.

“Despite its high frequency, spina bifida remains among the least understood structural birth defects,” says Brian C. Schutte, an associate professor of Microbiology and Molecular Genetics, Pediatrics and Human Development at Michigan State University and the study’s senior author. “There is strong evidence that genetic factors are a leading cause of such structural birth defects, but in most cases, the cause is unknown. Our team’s study is the first published research to demonstrate that DNA variants in the gene IRF6 can cause spina bifida,” Schutte says.

What’s more, the research team identified a mechanism to explain how altering IRF6 leads to neural tube defects. This mechanism links IRF6 function to two other genes – known as transcription Factor AP2A (TFAP2A) and Grainyhead Like 3 (GRHL3) – that are also known to be required for the development of the neural tube, lip and palate.

“We’re all on the hunt for the reasons when, how and why birth defects happen,” adds Youssef A. Kousa, MS, D.O., Ph.D., a clinical fellow in the Division of Child Neurology at Children’s National Health System and the study’s lead author. “Our main goal is prevention. This paper is a significant development because our team has identified a group of genes that can potentially contribute to very common types of birth defects: craniofacial as well as neural tube defects.”

The scientific odyssey is a wonderful example of serendipity. Kousa, then working in Schutte’s lab, was studying the effects of a new mutant experimental model strain on development of the palate. But one day, he walked into Schutte’s office holding a deformed preclinical embryo and said: “Brian, look at this!”

“Weird things happen in biology,” Schutte replied and counseled him to return if it happened again. Less than two weeks later, Kousa was back with several more of the deformed preclinical embryos, saying: “OK, Brian. It happened again.”

Within hours Kousa had unearthed recently published research that included an image of a similarly affected preclinical embryo. The pair then sketched out possible intersecting genetic pathways, as they brainstormed the myriad ways to end up with that specific phenotype. Initially, they tested their hypotheses in experimental models and eventually corroborated findings through human genetic studies.

The human studies could only be performed by collaborations. Schutte shared their initial observations with human genetics researchers scattered across the country. Those labs then generously agreed to test whether DNA variants in IRF6 were associated with neural tube defects in samples from patients that they had collected over decades of research.

The team found that Tfap2aIrf6 and Grhl3 are components of a gene regulatory network required for neurulation, a folding process that results in the neural tube bending and then fusing to become the basis of the embryo’s nervous system, from brain to spinal cord.

“Since this network is also required for formation of the lip, palate, limbs and epidermis, which develop at different times and places during embryogenesis, we suggest that the Tfap2aIrf6Grhl3 network is a fundamental pathway for multiple morphogenetic processes,” the researchers write.

Interferon Regulatory Factor 6 functions best when there is neither too much expression nor too little. Overexpression of Irf6 suppresses Transcription Factor Activation Protein 2A and Grainyhead Like 3, causing exencephaly, a neural tube defect characterized by the brain being located outside of the skull. Counterintuitively, experimental models that had too little Irf6 also ended up with reduced levels of Tfap2a and Grhl3 that led to a structural birth defect, but at the opposite end of the neural tube.

To test whether the experimental model findings held true in humans, they sequenced samples from people who had spina bifida and anencephaly – the rare birth defect that Kousa spotted in the experimental models – and found IRF6 function was conserved in people. Because of the genetic complexity of these birth defects, and the challenges inherent in collecting samples from cases of severe birth defects, many research teams were invited to participate in the study.

As testament to their collegiality, researchers from Stanford University, University of Texas at Austin, University of Iowa, University of Texas at Houston and Duke University agreed to share precious samples from the California Birth Defects Monitoring Program, from the Hereditary Basis of Neural Tube Defects study and from their own institutional sample collections.

“As we get better at personalized medicine, we could use this information to one day help to counsel families about their own risk and protective factors,” Kousa adds. “If we can identify the genetic pathway, we might also be able to modify it to prevent a birth defect. For example, prenatal supplementation with folic acid has led to a decrease in babies born with neural tube defects, but not all neural tube defects are sensitive to folic acid. This knowledge will help us develop individual-based interventions.”

Financial support for the research covered in this post was provided by the National Institutes of Health under grants DE13513, F31DE022696, DE025060, P01HD067244 and GM072859; startup funding from Michigan State University and the UT-Health School of Dentistry in Houston; and the Centers for Disease Control and Prevention under award number 5U01DD001033.

In addition to Kousa and Schutte, study co-authors include Huiping Zhu, Yunping Lei and Richard H. Finnell, University of Texas at Austin; Walid D. Fakhouri, University of Texas Health Science Center at Houston; Akira Kinoshita, Nagasaki University; Raeuf R. Roushangar, Nicole K. Patel, Tamer Mansour, Arianna L. Smith, and Dhruv B. Sharma, Michigan State University; A.J. Agopian and Laura E. Mitchell, University of Texas School of Public Health; Wei Yang and Gary M. Shaw, Stanford University School of Medicine; Elizabeth J. Leslie, Emory University; Xiao Li, Tamara D. Busch, Alexander G. Bassuk and Brad A. Amendt, University of Iowa; Edward B. Li and Eric C. Liao, Massachusetts General Hospital; Trevor J. Williams, University of Colorado Denver at Anschutz Medical Campus; Yang Chai, University of Southern California; and Simon Gregory and Allison Ashley-Koch, Duke University Medical Center.