Tag Archive for: robotic surgery

Charging ahead: Researchers develop robotic renal tumor surgery

robotic surgery apparatus

Researchers at Children’s National Hospital are developing supervised autonomous robotic surgery to make expert kidney tumor removal accessible in rural areas, combining robotics, AI and surgeon oversight for safer, more precise outcomes.

Imagine a robot capable of planning and executing the intricate removal of a cancerous kidney tumor — a concept that might sound like science fiction. Yet this groundbreaking work is underway at the Sheikh Zayed Institute (SZI) for Pediatric Surgical Innovation at Children’s National Hospital.

Called Supervised Autonomous Robotic Renal Tumor Surgery (SARRTS), the project aims to prove that a supervised autonomous kidney resection is feasible. Its goal is to enable general surgeons in rural hospitals to oversee robots performing complex resections, democratizing access to specialized surgical care. Backed by a $1 million contract from the Advanced Research Projects Agency for Health (ARPA-H), the initiative represents new opportunities in medical innovation.

“The hope is that, someday, patients will no longer have to travel to major oncology centers to get the best possible surgical outcome when faced with renal tumors,” said Kevin Cleary, PhD, associate director of engineering at SZI. “We hope to combine the precision of robotics with a surgeon’s clinical expertise to create consistently high outcomes.”

The patient benefit

Surgery is a cornerstone of cancer treatment, but access to skilled surgeons remains unevenly distributed nationwide. Autonomous robotic surgery could address this disparity by increasing access to expert-level care, enhancing the precision and consistency of procedures and unlocking new surgical possibilities beyond human surgeons’ capabilities.

Under the initial concept, the SARRTS system will use a combination of CT imaging and 3D mapping from a robot’s RGB-depth camera. While the robot independently plans and executes the incision and tumor resection, the supervising surgeon retains full control, with the ability to approve, modify or halt the procedure at any time — an interplay between human expertise and robotic precision to help ensure safety.

Testing will be conducted on realistic kidney models, called phantoms, which are designed to train and test surgical outcomes. The project aims to validate the feasibility of supervised autonomous tumor resection while advancing technologies that could pave the way for broader applications.

“Robotics and medicine have finally reached a point where we can consider projects requiring this level of complexity,” said Anthony Sandler, MD, senior vice president and surgeon-in-chief at Children’s National and executive director of SZI. By combining autonomous robotics, artificial intelligence and surgical expertise, we can profoundly impact the lives of patients facing life-altering cancer diagnoses.”

Children’s National leads the way

In addition to the kidney surgery initiative, the Children’s National team is pursuing other groundbreaking projects. These include a second ARPA-H contract focused on robotic gallbladder removal and a National Institutes of Health grant to explore robotic hip-pinning, a procedure used to repair fractured hips with pins, screws and plates.

Axel Krieger, PhD, an associate professor of mechanical engineering at Johns Hopkins University, is collaborating closely on the kidney resection and gallbladder projects. The interdisciplinary team believes this state-of-the-art care could be tested and developed within the next decade.

“This particular surgery is complex, and a robot may offer advantages to address difficulties created by patient anatomy and visibility within the surgical field,” said Dr. Sandler. “We can imagine a day – in the not too distant future – when a human and a robotic arm could team up to successfully advance this care.”

This project has been funded in whole with federal funds from ARPA-H under cooperative agreement AY1AX000023.

STAR robot is finalist in NASA iTech challenge

STAR Team

Children’s National Health System’s proprietary robotic surgical technology Smart Tissue Autonomous Robot (STAR) has been named one of the top ten finalists in the 2017 NASA iTech call for ideas challenge.

The Sheikh Zayed Institute for Pediatric Surgical Innovation’s intelligent Smart Tissue Autonomous Robot (STAR) has been named one of the top ten finalists in the 2017 NASA iTech challenge.

The team will present the project at the NASA iTech Forum on July 12-13, 2017 at the National Institute of Aerospace in Hampton, VA, where leaders from NASA and prospective stakeholders will evaluate the 10 finalists and select three top solutions.

“We’re honored to be selected as a finalist in this prestigious challenge,” said Peter C. Kim, M.D., vice president and associate surgeon in chief at Sheikh Zayed Institute at Children’s National. “Our technology is capable of many solutions that would be useful as part of NASAs deep space exploration, including intelligent pods capable of common intelligent autonomous surgical procedures.”

A cutting-edge system, STAR was the first to perform a successful autonomous robotic soft tissue surgery on a live subject in May 2016 and is licensed to Omniboros.

Robotic system automates soft-tissue surgery

Smart Tissue Autonomous Robot

STAR’s performance was measurably better in some respects, compared with surgeons performing the same procedure manually or with conventional robotic techniques.

PDF Version

What’s known

Robotic surgery has been increasingly adopted for a variety of procedures. However, conventional robotic surgery is still controlled by individual surgeons. One way to avoid variabilities and improve outcomes is to automate entire procedures or parts of procedures. Thus far, autonomous robotic surgery has been limited to parts of the body with rigid anatomy, because of the unpredictability of soft tissues. These structures can move in unexpected ways during cutting, suturing or cauterizing. No autonomous robotic systems for soft-tissue procedures have been developed due to technology lags, including a lack of vision systems that can distinguish and track tissue in dynamic surgical environments, and intelligent algorithms.

What’s new

A team of researchers led by Peter C.W. Kim, M.D., Ph.D., Vice President, and Axel Krieger, Ph.D., Assistant Professor of the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System, developed the Smart Tissue Autonomous Robot (STAR) for performing autonomous soft-tissue surgeries. The researchers tested its capability in three areas: Suturing a cut along a length of suspended intestine, suturing together two pieces of intestine removed from an experimental model and suturing together two pieces of intestine inside a living experimental model. The autonomous robot’s performance was measurably better in some respects, compared with surgeons trained for at least seven years performing the same procedure manually or with conventional robotic techniques. STAR’s stitches were more consistent and less prone to leaks. This demonstration of supervised autonomous surgical tasks by a robot promises that surgeons can improve their technical and decision-making skills in the not-too-distant future, working collaboratively with intelligent robots to improve clinical outcomes.

Questions for future research

Q: Can autonomous robots be used for soft-tissue procedures more complicated than suturing?
Q: Can this system be miniaturized for complex procedures taking place in a confined space, such as suturing together blood vessels?
Q: How can we make more intelligent robots available to all surgeons?

Source: Supervised autonomous robotic soft tissue surgery.” Shademan A., R.S. Decker, J.D. Opfermann, S. Leonard, A. Krieger and P.C.W. Kim. Published by Science Translational Medicine on May 4, 2016.

Popular Science awards smart tissue autonomous robot

stm-star01rescaled

Technology developed in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National has been named one of the 12 Most Important Health Innovations of the Year in the November/December 2016 issue of Popular Science. Smart Tissue Autonomous Robot (STAR), a technology that performed the first supervised, autonomous robotic soft tissue surgery on a live subject (in vivo) this year, has been awarded a 2016 Popular Science Best of What’s New Award in the Health category.

How the smart tissue autonomous robot works

STAR removes the surgeon’s hands from the procedure, instead utilizing the surgeon as supervisor, with soft tissue suturing autonomously planned and performed by the STAR robotic system.  The system integrates near infrared florescent (NIRF) markers and 3-D plenoptic vision to provide uninhibited tracking of tissue motion. This tracking is combined with an intelligent algorithm that autonomously adjusts the surgical plan in real time as tissue movements occur.

About Popular Science health innovations of the year

Each year, the editors of Popular Science review thousands of products in search of the top 100 tech innovations of the year—breakthrough products and technologies that represent a significant leap in their categories.

The Best of What’s New awards honor the innovations that shape the future,” says Kevin Gray, Executive Editor, Popular Science. “From lifesaving technology to incredible space engineering to gadgets that are just breathtakingly cool, this is the best of what’s new.”