Posts

Dr. Bear Bot

New robot comes to cardiac intensive care unit

Dr. Bear Bot

Dr. Bear Bot’s “robot-only” parking space in the Cardiac ICU. Alejandro Lopez-Magallon, M.D., is featured on the robot display screen, where he drives the robot from his location in the command center, in order to visit patient rooms and capture additional medical information and connect with patients, parents, and attending nurses and physicians.

This Valentine’s Day, a new robot who lives in the cardiac intensive care unit (cardiac ICU) at Children’s National received more than a valentine. The 7-month-old robot, standing 5 feet, 6 inches tall, also received a name: Dr. Bear Bot.

After a 21-day voting period, 185 children and staff voted on Dr. Bear Bot, which received 36 votes, beating 14 other child-selected names, including SMARTy (Special Medical Access to Remote Technology), Dr. Bot and Rosie, which were submitted during the hospital’s Race for Every Child 5K race and fun walk on Oct. 20, 2018. The news was announced Valentine’s Day to more than 220 patients over WPAW, the children hospital’s closed-circuit television and radio station. The Wi-Fi-enabled robot left the cardiac ICU, often referred to as the tele-cardiac ICU, for the first time since it arrived in late August to attend the robot-reveal party.

Dr. Bear Bot completed a 90-day test period in the tele-cardiac ICU at Children’s National, which started in September, and the bot now works as a virtual liaison to connect patients, attending nurses and physicians with Ricardo Munoz, M.D., executive director of the telemedicine program and the division chief of critical cardiac care, and Alejandro Lopez-Magallon, M.D., a cardiologist and the associate medical director of the telemedicine program.

Dr. Munoz and Dr. Lopez-Magallon use a nine-screen virtual command center to monitor patient vitals – such as heart rate, body temperature or respiration rate – especially for infants and children who are recovering from congenital heart surgery, flown in for an emergency diagnostic procedure, such as a catheterization, or who are in the process of receiving a heart or kidney transplant. Instead of traveling to individual rooms to check in on the status of one patient, the doctors can now monitor multiple patients simultaneously.

If Drs. Munoz or Lopez-Magallon want to take an X-ray or further examine a patient, they turn Dr. Bear Bot on, drive the robot from its ‘robot-only’ parking space, adjacent to the nurse’s station, and connect with attending doctors and nurses in the teaming area. The onsite clinicians accompany one of the telemedicine doctors, both of whom remain in the command center but appear virtually on the robot’s display screen, to the patient’s room to capture additional medical information and to connect with patients and their parents.

Over time the telemedicine team will measure models of efficiency in the tele-cardiac ICU, such as through-put, how fast a patient checks in and out of the hospital, as well as standards of safety, quality and care, measured by quality of life and short- and long-term patient health outcomes.

Ricardo Munoz and Alejandro Lopez-Magallon

(R) Ricardo Munoz, M.D., executive director of the telemedicine program and the division chief of critical cardiac care, and Alejandro Lopez-Magallon, M.D., a cardiologist and the associate medical director of the telemedicine program in the tele-cardiac ICU command center.

“As technology and medicine advance, so do our models of telemedicine, which we call virtual care,” says Shireen Atabaki, M.D., M.P.H., an emergency medicine physician at Children’s National, who manages an ambulatory virtual health program, which enables patients to use virtual health platforms to connect with doctors, but from the comfort of their home. “We find the patient-centered platforms and this new technology saves families’ time and we’re looking forward to studying internal models to see how this can help our doctors, enabling us to do even more.”

The ongoing virtual connection program that Dr. Atabaki references launched in spring 2016 and has enabled 900 children to connect to a doctor from a computer, tablet or smart phone, which has saved families 1,600 driving hours and more than 41,000 miles over a two-year period. Through this program, virtual care is provided to children in our region by 20 subspecialists, including cardiologists, dermatologists, neurologists, urgent care doctors, geneticists, gastroenterologists and endocrinologists.

To extend the benefits of virtual communication, while saving mileage and time, Dr. Atabaki and the telemedicine team at Children’s National will partner with K-12 school systems, local hospitals and health centers and global health systems.

Meanwhile, Dr. Bear Bot, developed by InTouch Health, returned to a more pressing matter after the robot-reveal party: handing out robot-themed Valentine’s Day cards.

Dr. Bear Bot has an indefinite life span but requires six hours of rest, or full charging, each night. After early-morning rounds with doctors, powering through congenital heart disease trivia in the WPAW studio and handing out Valentines to patients, the tele-cardiac ICU catalyst was ready to recharge.

Dr. Michael Hsieh's clay shield

Innovative urologist Michael Hsieh takes unbeaten path

Dr. Michael Hsieh's clay shield

For an elementary school art project, Michael H. Hsieh, M.D., Ph.D., was instructed to fashion a coat of arms out of clay. In addition to panels for truth, justice and Taiwan, in the shield’s M.D. panel, a snake twists around a rod, like the staff for Asclepius, a Greek god associated with healing.

Children’s urologist Michael H. Hsieh, M.D., Ph.D., knew from age 10 that he would become a doctor. Proof is at his parents’ home. For an elementary school art project, students were instructed to fashion a coat of arms out of clay. In addition to panels for truth, justice and Taiwan, in the shield’s M.D. panel, a snake twists around a rod, like the staff for Asclepius, a Greek god associated with healing.

“I liked science. When I can use it to help patients, that is very rewarding,” says Dr. Hsieh, the first doctor in his family.

These days, Dr. Hsieh’s Twitter profile serves as a digital coat of arms, describing him as “tinker, tailor,” #UTI #biologist, epithelial #immunologist, helminthologist and #urologist.

Tinker/tailor is shorthand for the mystery drama, “Tinker Tailor Solider Spy,” he explains, adding that the “tinker” part also refers “to the fact that I am always questioning things, and science is about experimentation, trying to seek answers to questions.”

While still in medical school during a rotation Dr. Hsieh saw a bladder operation on a young child and thought it was “amazing.” That experience in part inspired Dr. Hsieh to become a urologist and bladder scientist. His training in immunology and study of the bladder naturally led him to study urinary tract infections and parasitic worms that affect the urinary tract. In addition, thanks to R01 funding from the National Institutes of Health (NIH), Dr. Hsieh is co-principal investigator with Axel Krieger, University of Maryland, and Jin U. Kang, Johns Hopkins, on a project to develop imaging robots for supervised autonomous surgery on soft tissue.

The $1 million in NIH funding pushes the boundaries on amazing by using multi-spectral imaging technology and improved techniques to reduce surgical complications.

Anastomosis is a technique used by surgeons to join one thing to another, whether it’s a vascular surgeon suturing blood vessels, an orthopedic surgeon joining muscles or a urologist stitching healthy parts of the urinary tract back together. Complications can set in if their stitching is too tight, prompting scar tissue to form, or too loose, letting fluid seep out.

“The human eye can see a narrow spectrum of electromagnetic radiation. These multi-spectral imaging cameras would see across greater set of wavelengths,” he says.

The project has three aims: figuring out the best way to place sutures using multi-spectral imaging, accurately tracking soft tissue as they model suturing and comparing the handicraft of a robot against anastomosis hand-sewn by surgeons.

“I like challenges, and I like new things. I am definitely not interested in doing permutations of other people’s work,” Dr. Hsieh explains. “I would much rather go on a path that hasn’t been tread. It is more difficult in some ways, but on a day-to-day basis, I know I am making a contribution.”

In another innovative research project, Dr. Hsieh leveraged a protein secreted by a parasitic worm, Schistosoma haematobium, that suppresses inflammation in hosts as a new therapeutic approach for chemotherapy-induced hemorrhagic cystitis, a form of inflammation of the bladder.

Watching his first surgery nearly 30 years ago, he had no idea robots might one day vie to take over some part of that complicated procedure, or that parasite proteins could be harnessed as drugs. However, he has a clear idea which innovations could be on the horizon for urology in the next three decades.

“My hope is 30 years from now, we will have a solid UTI vaccine and more non-antibiotic therapies. UTIs are the second-most common bacterial infection in childhood and, in severe cases, can contribute to kidney failure,” he says.

Globally, parasitic worms pose an ongoing challenge, affecting more than 1 billion worldwide – second only to malaria. People persistently infected by schistosome worms fail to reach their growth potential, struggle academically and lack sufficient energy for exercise or work.


“There is a feeling that the infection prevalence might be decreasing globally, but not as quickly as everyone hopes. In 30 years perhaps with more mass drug administration and additional drugs – including a vaccine – we’ll have it close to eliminated globally. It would become more like polio, casting a slim shadow with small pockets of infection here or there, rather than consigning millions to perpetual poverty.”

Smart Tissue Autonomous Robot (STAR)

Popular Science awards smart tissue autonomous robot

stm-star01rescaled

Technology developed in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National has been named one of the 12 Most Important Health Innovations of the Year in the November/December 2016 issue of Popular Science. Smart Tissue Autonomous Robot (STAR), a technology that performed the first supervised, autonomous robotic soft tissue surgery on a live subject (in vivo) this year, has been awarded a 2016 Popular Science Best of What’s New Award in the Health category.

How the smart tissue autonomous robot works

STAR removes the surgeon’s hands from the procedure, instead utilizing the surgeon as supervisor, with soft tissue suturing autonomously planned and performed by the STAR robotic system.  The system integrates near infrared florescent (NIRF) markers and 3-D plenoptic vision to provide uninhibited tracking of tissue motion. This tracking is combined with an intelligent algorithm that autonomously adjusts the surgical plan in real time as tissue movements occur.

About Popular Science health innovations of the year

Each year, the editors of Popular Science review thousands of products in search of the top 100 tech innovations of the year—breakthrough products and technologies that represent a significant leap in their categories.

The Best of What’s New awards honor the innovations that shape the future,” says Kevin Gray, Executive Editor, Popular Science. “From lifesaving technology to incredible space engineering to gadgets that are just breathtakingly cool, this is the best of what’s new.”