Tag Archive for: renal function

mitochondria

Treating nephrotic-range proteinuria with tacrolimus in MTP

mitochondria

Mitochondria are the cell’s powerplants and inside them the MTP enzymatic complex catalyzes three steps in beta-oxidation of long-chain fatty acids.

In one family, genetic lightning struck twice. Two sisters were diagnosed with mitochondrial trifunctional protein (MTP) deficiency. This is a rare condition that stops the body from converting fats to energy, which can lead to lactic acidosis, recurrent breakdown of muscle tissue and release into the bloodstream (rhabdomyolysis), enlarged heart (cardiomyopathy) and liver failure.

Mitochondria are the cell’s powerplants and inside them the MTP enzymatic complex catalyzes three steps in beta-oxidation of long-chain fatty acids. MTP deficiency is so rare that fewer than 100 cases have been reported in the literature says Hostensia Beng, M.D., who presented an MTP case study during the American Society of Nephrology’s Kidney Week.

The 7-month-old girl with known MTP deficiency arrived at Children’s National lethargic with poor appetite. Her laboratory results showed a low corrected serum calcium level, elevated CK level and protein in the urine (proteinuria) at a nephrotic range. The infant was treated for primary hypoparathyroidism and rhabdomyolysis.

Even though the rhabdomyolysis got better, the excess protein in the girl’s urine remained at worrisome levels. A renal biopsy showed minimal change disease and foot process fusion. And electron microscopy revealed shrunken, dense mitochondria in visceral epithelial cells and endothelium.

“We gave her tacrolimus, a calcineurin inhibitor that we are well familiar with because we use it after transplants to ensure patient’s bodies don’t reject the donated organ. By eight months after treatment, the girl’s urine protein-to-creatinine (uPCR) ratio was back to normal. At 35 months, that key uPCR measure rose again when tacrolimus was discontinued. When treatment began again, uPCR was restored to normal levels one month later,” Dr. Beng says.

The girl’s older sister also shares the heterozygous deletion in the HADHB gene, which provides instructions for making MTP. That missing section of the genetic how-to guide was predicted to cause truncation and loss of long-chain-3-hydroxyacl CoA dehydrogenase function leading to MTP deficiency.

The older sister was diagnosed with nephrotic syndrome and having scar tissue in the kidney’s filtering unit (focal segmental glomerulosclerosis) when she was 18 months old. By contrast, she developed renal failure and progressed to end stage renal disease at 20 months of age.

“Renal involvement has been reported in only one patient with MTP deficiency to date, the older sister of our patient,” Dr. Beng adds.

Podocytes are specialized cells in the kidneys that provide a barrier, preventing plasma proteins from leaking into the urine. Podocytes, however, need energy to function and are rich in mitochondria.

“The proteinuria in these two sisters may be related to their mitochondrial dysfunction. Calcineurin inhibitors like tacrolimus have been reported to reduce proteinuria by stabilizing the podocyte actin cytoskeleton. Tacrolimus was an effective treatment for our patient, who has maintained normal renal function, unlike her sister,” Dr. Beng says.

American Society of Nephrology’s Kidney Week presentation

  • “Treatment of nephrotic-range proteinuria with tacrolimus in mitochondrial trifunctional protein deficiency

Hostensia Beng, M.D., lead author; Asha Moudgil, M.D., medical director, transplant, and co-author; Sun-Young Ahn, M.D., MS, medical director, nephrology inpatient services, and senior author, all of Children’s National Health System.

fruit fly

Studying fruit flies to better understand human kidneys

fruit fly

In his latest study, Zhe Han and co-authors zeroed in on Rab genes to determine their role in fruit fly renal function.

It’s a given that fruit flies and humans are different. Beyond the obvious are a litany of less-apparent distinctions. For example, fruit flies have hemolymph instead of blood. Arranged around a single cardiac chamber, compared with humans’ four-chamber hearts, are a group of cells called nephrocytes that serve the same function as human kidneys, filtering toxins and waste from hemolymph.

But despite the dissimilarities between these two organisms, fly nephrocytes and human kidney cells are similar enough to allow the fruit fly, a common lab model that shares about 60 percent of its DNA with people, to provide insights on kidney disease in people. In a new study in fruit flies led by Zhe Han, Ph.D., principal investigator and associate professor in the Center for Cancer and Immunology Research at Children’s National Health System, researchers identified several new genes thought to be critical for renal function in humans. The findings could lend insight to the inner workings of this organ down to the molecular level and eventually help further the understanding or treatment of kidney disorders.

Han explains that recent research by his group tied 80 fruit fly genes to renal function. Many of these newly identified genes were Rab GTPases, a family of genes that make proteins whose job is to move substances around in cells through membrane-enclosed pouches called vesicles. For example, Rab proteins might put some substances on the path to destruction by moving them into lysosomes, vesicles with enzymes that break down all kinds of biomolecules. Rab proteins might help other substances be reused by steering them into recycling endosomes, vesicles that shuttle biomolecules that are still useful to where they will be used next.

In their latest study, published online Feb. 8, 2017 in Cell & Tissue Research, Han and co-authors zeroed in on these Rab genes to determine their role in fruit fly renal function. The researchers accomplished this by using genetic alterations to shut down each gene selectively in fruit fly nephrocytes. They then evaluated these transgenic flies on a number of different characteristics, including ability to effectively filter proteins from the blood, whether toxins placed in their food accumulated in their nephrocytes, how they developed and how they survived.

Their findings readily identified five Rab genes that seemed more important for these functions than the others: Rabs 1, 5, 7, 11 and 35, which all have analogous genes in humans.

Peering into the nephrocytes of flies in which these three Rabs had been silenced, the researchers made critical discoveries. Turning off Rab 7 appeared to block the path toward biomolecules in the cell entering lysosomes. Rather than biomolecules being destroyed, they instead were shuttled to the recycling route. Turning off Rab 11 had the reverse effect; recycling endosomes were drastically reduced, while lysosomes dramatically increased. Turning off Rab 5 had the most striking effect: All vesicles going in or out were blocked – like a cellular traffic jam – filling the cell with biomolecules that had no place to go, Han says.

Han, who has long tracked renal-related mutations in humans, says that no patients with kidney disease have turned up so far with Rab mutations. These genes are critical for functions throughout the body, he explains, so any embryos with these mutations are unlikely to survive. However, he adds, a host of other renal-related genes work in parallel or are controlled by different Rabs. So understanding the role of Rabs in renal function provides some insight into how these genes operate as well as what might happen when the function of these genes goes awry.

Han plans to study how Rabs 5, 7 and 11 fit into networks of renal genes as well as the role of the other Rabs that could play novel roles in the nephrocyte cell trafficking.

“These findings in fly Rabs provide the framework to study the major causes of kidney disease in human patients,” he adds.

Zhe Han

Fruit flies can model human genetic kidney disease

Zhe Han

Zhe Han, Ph.D., has found that a majority of human genes known to be associated with nephrotic syndrome play conserved roles in renal function, from fruit flies to humans.

Drosophila melanogaster, the common fruit fly, has played a key role in genetic research for decades. Even though D. melanogaster and humans look vastly different, researchers estimate that about 75 percent of human disease-causing genes have a functional homolog in the fly.

A Children’s National Health System research team reported in a recent issue of Human Molecular Genetics that the majority of genes associated with nephrotic syndrome (NS) in humans also play pivotal roles in Drosophila renal function, a conservation of function across species that validates transgenic flies as ideal pre-clinical models to improve understanding of human disease.

NS is a cluster of symptoms that signal kidney damage, including excess protein in urine, low protein levels in blood, elevated cholesterol and swelling. Research teams have identified mutations in more than 40 genes that cause genetic kidney disease, but knowledge gaps remain in understanding the precise roles that specific genes play in kidney cell biology and renal disease. To address those research gaps, Zhe Han, Ph.D., a principal investigator and associate professor in the Center for Cancer & Immunology Research at Children’s National, and colleagues systematically studied NS-associated genes in the Drosophila model, including seven genes whose renal function had never been analyzed in a pre-clinical model.

“Eighty-five percent of these genes are required for nephrocyte function, suggesting that a majority of human genes known to be associated with NS play conserved roles in renal function from flies to humans,” says Han, the paper’s senior author. “To hone in on functional conservation, we focused on Cindr, the fly’s version of the human NS gene, CD2AP,” Han adds. “Silencing Cindr in nephrocytes led to dramatic impairments in nephrocyte function, shortened their life span, collapsed nephrocyte lacunar channels – the fly’s nutrient circulatory system – and effaced nephrocyte slit diaphragms, which diminished filtration function.”

And, to confirm that the phenotypes they were studying truly caused human disease, they reversed the damage by expressing a wild-type human CD2AP gene. A mutant allele derived from a patient with CD2AP-associated NS did not rescue the phenotypes.

Thus, the Drosophila nephrocyte can be used to explain the clinically relevant molecular mechanisms underlying the pathogenesis of most monogenic forms of NS, the research team concludes. “This is a landmark paper for using the fly to study genetic kidney diseases,” Han adds. “For the first time, we realized that the functions of essential kidney genes could be so similar from the flies to humans.”

A logical next step will be to generate personalized in vivo models of genetic renal diseases bearing patient-specific mutations, Han says. These in vivo models can be used for drug screens to identify treatments for kidney diseases that currently lack therapeutic options, such as most of the 40 genes studies in this paper as well as the APOL1 gene that is associated with the higher risk of kidney diseases among millions of African Americans.