Tag Archive for: Pediatric Academic Societies 2018 annual meeting

distressed woman holding baby

When depression lingers after the NICU

distressed woman holding baby

Roughly half a million babies end up in the neonatal intensive care unit (NICU) each year in the U.S., often sending their parents on a wild emotional rollercoaster. Like other new parents, many parents feel symptoms of depression when their child leaves the NICU. For the majority, these depressive symptoms lift over time. But for others, depression can persist, affecting their well-being and relationships, including those with their new babies.

Thus far, it’s been unclear which parents are at a higher risk for this lasting depression. However, a new study led by Children’s researchers and presented at the Pediatric Academic Societies 2018 annual meeting suggests that parents whose depression lingers six months after their child’s NICU discharge tend to share certain demographic characteristics: They’re younger, have less education and care for more than one child.

“Using a validated screening tool, we found that 40 percent of parents in our analyses were positive for depression at the time their newborn was discharged from the NICU,” says Karen Fratantoni, M.D., M.P.H., a Children’s pediatrician and the lead study author. “It’s reassuring that, for many parents, these depressive symptoms ease over time. However for a select group of parents, depression symptoms persisted six months after discharge. Our findings help to ensure that we target mental health screening and services to these more vulnerable parents,” Dr. Fratantoni adds.

The study is an offshoot from “Giving Parents Support (GPS) after NICU discharge,” a large, randomized clinical trial exploring whether providing peer-to-peer parental support after NICU discharge improves babies’ overall health as well as their parents’ mental health.

Mothers of preterm and full-term infants who are hospitalized in NICUs are at risk for peripartum mood disorders, including postpartum depression. The Children’s research team sought to determine how many parents of NICU graduates experience depression and which characteristics are shared by parents with elevated depression scores.

They included 125 parents who had enrolled in the GPS clinical trial in their exploratory analyses and assessed depressive symptoms using a 10-item, validated screening tool, the Center for Epidemiological Studies Depression Scale (CES-D). Eighty-four percent of the parents were women. Nearly 61 percent of their infants were male and were born at a median gestational age of 37.7 weeks and mean birth weight of 2,565 grams. The median length of time these newborns remained in the NICU was 18 days.

When the newborns were discharged, 50 parents (40 percent) had elevated CES-D scores. By six months after discharge, that number dropped to 17 parents (14 percent).Their mean age ranged from 26.5 to 30.6 years old.

“Parents of NICU graduates who are young, have less education and are caring for other children are at higher risk for persistent symptoms of depression,” says Dr. Fratantoni. “We know that peripartum mood disorders can persist for one year or more after childbirth so these findings will help us to better match mental health care services to parents who are most in need.”

An American College of Obstetricians and Gynecologists’ committee opinion issued May 2018 calls for all women to have contact with a maternal care provider within the first three weeks postpartum and to undergo a comprehensive postpartum visit no later than 12 weeks after birth that includes screening for postpartum depression and anxiety using a validated instrument.

Study co-authors include Lisa Tuchman, M.D., MPH, chief, Children’s Adolescent and Young Adult Medicine Division; Randi Streisand, Ph.D., Children’s interim chief of Psychology and Behavioral Health; Nicole S. Herrera; Katherine Kritikos and Lamia Soghier, M.D., Children’s neonatologist.

Preemie Baby

Brain food for preemies

Preemie Baby

Babies born prematurely – before 37 weeks of pregnancy – often have a lot of catching up to do. Not just in size. Preterm infants typically lag behind their term peers in a variety of areas as they grow up, including motor development, behavior and school performance.

New research suggests one way to combat this problem. The study, led by Children’s researchers and presented during the Pediatric Academic Societies 2018 annual meeting, suggests that the volume of carbohydrates, proteins, lipids and calories consumed by very vulnerable premature infants significantly contributes to increased brain volume and white matter development, even though additional research is needed to determine specific nutritional approaches that best support these infants’ developing brains.

During the final weeks of pregnancy, the fetal brain undergoes an unprecedented growth spurt, dramatically increasing in volume as well as structural complexity as the fetus approaches full term.

One in 10 infants born in the U.S. in 2016 was born before 37 weeks of gestation, according to the Centers for Disease Control and Prevention. Within this group, very low birthweight preemies are at significant risk for growth failure and neurocognitive impairment. Nutritional support in the neonatal intensive care unit (NICU) helps to encourage optimal brain development among preterm infants. However, their brain growth rates still lag behind those seen in full-term newborns.

“Few studies have investigated the impact of early macronutrient and caloric intake on microstructural brain development in vulnerable preterm infants,” says Katherine Ottolini, lead author of the Children’s-led study. “Advanced quantitative magnetic resonance imaging (MRI) techniques may help to fill that data gap in order to better direct targeted interventions to newborns who are most in need.”

The research team at Children’s National Health System enrolled 69 infants who were born younger than 32 gestational weeks and weighed less than 1,500 grams. The infants’ mean birth weight was 970 grams and their mean gestational age at birth was 27.6 weeks.

The newborns underwent MRI at their term-equivalent age, 40 weeks gestation. Parametric maps were generated for fractional anisotropy in regions of the cerebrum and cerebellum for diffusion tensor imaging analyses, which measures brain connectivity and white matter tract integrity. The research team also tracked nutritional data: Grams per kilogram of carbohydrates, proteins, lipids and overall caloric intake.

“We found a significantly negative association between fractional anisotropy and cumulative macronutrient/caloric intake,” says Catherine Limperopoulos, Ph.D., director of Children’s Developing Brain Research Laboratory and senior author of the research. “Curiously, we also find significantly negative association between macronutrient/caloric intake and regional brain volume in the cortical and deep gray matter, cerebellum and brainstem.”

Because the nutritional support does contribute to cerebral volumes and white matter microstructural development in very vulnerable newborns, Limperopoulos says the significant negative associations seen in this study may reflect the longer period of time these infants relied on nutritional support in the NICU.

In addition to Ottolini and Limperopoulos, study co-authors include Nickie Andescavage, M.D., Attending, Children’s Neonatal-Perinatal Medicine; and Kushal Kapse.

newborn in incubator

How EPO saves babies’ brains

newborn in incubator

Researchers have discovered that treating premature infants with erythropoietin can help protect and repair their vulnerable brains.

The drug erythropoietin (EPO) has a long history. First used more than three decades ago to treat anemia, it’s now a mainstay for treating several types of this blood-depleting disorder, including anemia caused by chronic kidney disease, myelodysplasia and cancer chemotherapy.

More recently, researchers discovered a new use for this old drug: Treating premature infants to protect and repair their vulnerable brains. However, how EPO accomplishes this feat has remained unknown. New genetic analyses presented at the Pediatric Academic Societies 2018 annual meeting that was conducted by a multi-institutional team that includes researchers from Children’s National show that this drug may work its neuroprotective magic by modifying genes essential for regulating growth and development of nervous tissue as well as genes that respond to inflammation and hypoxia.

“During the last trimester of pregnancy, the fetal brain undergoes tremendous growth. When infants are born weeks before their due dates, these newborns’ developing brains are vulnerable to many potential insults as they are supported in the neonatal intensive care unit during this critical time,” says An Massaro, M.D., an attending neonatologist at Children’s National Health System and lead author of the research. “EPO, a cytokine that protects and repairs neurons, is a very promising therapeutic approach to support the developing brains of extremely low gestational age neonates.”

The research team investigated whether micro-preemies treated with EPO had distinct DNA methylation profiles and related changes in expression of genes that regulate how the body responds to such environmental stressors as inflammation, hypoxia and oxidative stress.  They also investigated changes in genes involved in glial differentiation and myelination, production of an insulating layer essential for a properly functioning nervous system. The genetic analyses are an offshoot of a large, randomized clinical trial of EPO to treat preterm infants born between 24 and 27 gestational weeks.

The DNA of 18 newborns enrolled in the clinical trial was isolated from specimens drawn within 24 hours of birth and at day 14 of life. Eleven newborns were treated with EPO; a seven-infant control group received placebo.

DNA methylation and whole transcriptome analyses identified 240 candidate differentially methylated regions and more than 50 associated genes that were expressed differentially in infants treated with EPO compared with the control group. Gene ontology testing further narrowed the list to five candidate genes that are essential for normal neurodevelopment and for repairing brain injury:

“These findings suggest that EPO’s neuroprotective effect may be mediated by epigenetic regulation of genes involved in the development of the nervous system and that play pivotal roles in how the body responds to inflammation and hypoxia,” Dr. Massaro says.

In addition to Dr. Massaro, study co-authors include Theo K. Bammler, James W. MacDonald, biostatistician, Bryan Comstock, senior research scientist, and Sandra “Sunny” Juul, M.D., Ph.D., study principal investigator, all of University of Washington.