Tag Archive for: operating room

DNA Molecule

Decoding cellular signals linked to hypospadias

DNA Molecule

“By advancing our understanding of the genetic causes and the anatomic differences among patients, the real goal of this research is to generate knowledge that will allow us to take better care of children with hypospadias,” Daniel Casella, M.D. says.

Daniel Casella, M.D., a urologist at Children’s National, was honored with an AUA Mid-Atlantic Section William D. Steers, M.D. Award, which provides two years of dedicated research funding that he will use to better understand the genetic causes for hypospadias.

With over 7,000 new cases a year in the U.S., hypospadias is a common birth defect that occurs when the urethra, the tube that transports urine out of the body, does not form completely in males.

Dr. Casella has identified a unique subset of cells in the developing urethra that have stopped dividing but remain metabolically active and are thought to represent a novel signaling center. He likens them to doing the work of a construction foreman. “If you’re constructing a building, you need to make sure that everyone follows the blueprints.  We believe that these developmentally senescent cells are sending important signals that define how the urethra is formed,” he says.

His project also will help to standardize the characterization of hypospadias. Hypospadias is classically associated with a downward bend to the penis, a urethra that does not extend to the head of the penis and incomplete formation of the foreskin. Still, there is significant variability among patients’ anatomy and to date, no standardized method for documenting hypospadias anatomy.

“Some surgeons take measurements in the operating room, but without a standardized classification system, there is no definitive way to compare measurements among providers or standardize diagnoses from measurements that every surgeon makes,” he adds. “What one surgeon may call ‘distal’ may be called ‘midshaft’ by another.” (With distal hypospadias, the urethra opening is near the penis head; with midshaft hypospadias, the urethra opening occurs along the penis shaft.)

“By advancing our understanding of the genetic causes and the anatomic differences among patients, the real goal of this research is to generate knowledge that will allow us to take better care of children with hypospadias,” he says.

Parents worry about lingering social stigma, since some boys with hypospadias are unable to urinate while standing, and in older children the condition can be associated with difficulties having sex. Surgical correction of hypospadias traditionally is performed when children are between 6 months to 1 year old.

When reviewing treatment options with family, “discussing the surgery and postoperative care is straight forward. The hard part of our discussion is not having good answers to questions about long-term outcomes,” he says.

Dr. Casella’s study hopes to build the framework to enable that basic research to be done.

“Say we wanted to do a study to see how patients are doing 15-20 years after their surgery.  If we go to their charts now, often we can’t accurately describe their anatomy prior to surgery.  By establishing uniform measurement baselines, we can accurately track long-term outcomes since we’ll know what condition that child started with and where they ended up,” he says.

Dr. Casella’s research project will be conducted at Children’s National under the mentorship of Eric Vilain, M.D., Ph.D., an international expert in sex and genitalia development; Dolores J. Lamb, Ph.D., HCLD, an established leader in urology based at Weill Cornell Medicine; and Marius George Linguraru, DPhil, MA, MSc, an expert in image processing and artificial intelligence.

surgical theater

Virtual reality allows surgical planning from every angle

surgical theater

The virtual reality surgical system projects images into the operating room, allowing neurosurgeons to revisit the surgical plan in real time.

Neurosurgeons at Children’s National Health System are getting a new three-dimensional (3D) perspective on their cases thanks to an FDA-approved breakthrough virtual reality surgical system.

Children’s National is the first pediatric health system in metropolitan Washington, D.C., to use this state-of-the art system, created by Surgical Theater. It seamlessly integrates patient-specific surgical planning and navigation, professional education and rehearsal.

The technology acquisition was made possible through a generous gift from Sidney & Phyllis Bresler, in honor of their children Alex, Jonathan and Amanda and grandson Theo Charles Bresler, and in loving memory of Joshua Stouck.

“Virtual reality modeling enables us to further explore, analyze and find the best approach for each unique surgical procedure,” said Children’s National President and CEO Kurt Newman, M.D. “This generous gift from Sidney & Phyllis Bresler should translate into better outcomes for many of the more than 17,500 patients who receive surgery at our hospital each year, and will benefit generations to come. We are deeply grateful for the Breslers’ commitment to pediatric innovation.”

The 3D, 360-degree view gives surgeons a cutting-edge digital tool to plan procedures in depth using an accurate capture of the patient’s unique anatomy, and also allows the surgeon to illustrate the surgical path in greater detail than ever before for patients and their families.

“Technology such as Surgical Theater’s represents a quantum leap for neurosurgeons, both in and out of the operating room,” said Robert Keating, M.D., chief of Neurosurgery at Children’s National, in a press release from the company. “It allows us to marry state-of-the-art 3D simulation to the real world; for the patient and family as well as doctors in training, and ultimately offers a new tool for the neurosurgical armamentarium in approaching complex lesions in the brain, such as AVM’s, tumors, epilepsy and functional cases.”