Tag Archive for: medical device

facial recognition of noonan syndrome

Commercialization of novel facial analysis technology can improve diagnosis of rare disorders in pediatric patients

facial recognition of noonan syndrome

Children’s National Hospital has entered into a licensing agreement with MGeneRx Inc. for its patented pediatric medical device technology using objective digital biometric analysis software for the early and non-invasive screening of dysmorphic genetic diseases such as Noonan syndrome.

Children’s National Hospital has entered into a licensing agreement with life sciences technology company MGeneRx Inc. for its patented pediatric medical device technology using objective digital biometric analysis software for the early and non-invasive screening of dysmorphic genetic diseases. The technology, developed by a multidisciplinary Children’s National team led by Marius George Linguraru, D.Phil, M.A., M.Sc., of the Sheikh Zayed Institute for Pediatric Surgical Innovation and Marshall Summar, M.D., director of the Children’s National Rare Disease Institute (CNRDI), can provide a more advanced diagnostic tool for regions of the world with limited access to geneticists or genetic testing.

The application utilizes artificial intelligence (AI) and machine learning to analyze biometric data and identify facial markers that are indicative of genetic disorders. Physicians can capture biometric data points of a child’s face in real time within the platform, where it scans facial biometric features to determine the potential presence of a genetic disease, which can often be life-threatening without early intervention. Research studies conducted in conjunction with the National Human Genome Research Institute at the National Institutes of Health further enhanced the development of the application in recent years, showing the potential to detect, with a 90 percent accuracy, early diagnosis of 128 genetic diseases across pediatric subjects in 28 countries. These diseases include DiGeorge syndrome (22q11.2 deletion syndrome), Down syndrome, Noonan syndrome and Williams-Beuren syndrome.

“We are delighted to enter into this licensing agreement through Innovation Ventures, the commercialization arm of Children’s National Hospital, which seeks to move inventions and discoveries from Children’s National to the marketplace to benefit the health and well-being of children. Our mission is to add the ‘D’ in development to the ‘R’ in research to accelerate the commercialization of our intellectual property,” says Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer at Children’s National and managing director of Innovation Ventures. “It is through partnerships with startups and the industry that we can achieve this goal and thus we highly value this new partnership with MGeneRx Inc. The acceleration and commercialization of this objective digital biometric analysis technology will not only help diagnose rare genetic disorders – it will also allow for earlier interventions that improve the quality of life for the children living with these conditions.”

Eskandanian adds that the social impact of this technology is especially profound in lower income nations around the world, where there is a high prevalence of rare genetic conditions but a severe lack in the specialty care required to diagnose and treat them. Additional data collected through the expanded use of the technology will help to further develop the application and expand its capabilities to identify and diagnose additional rare genetic conditions.

The licensing agreement was arranged by the Children’s National Office of Innovation Ventures, which is focused on the commercialization of impactful new pediatric medical device technologies and therapies to advance children’s health care. Created to catalyze the ongoing translational research of the Children’s National Research Institute (CNRI) as well as inventions by hospital’s clinicians, Innovation Ventures focuses on four core pillars to advance pediatric medical technologies including a Biodesign program, partnerships and alliances to augment internal capacity, seed funding to de-risk technologies and validate market and clinical relevance, and back-office operations to manage intellectual property and licensing activities. Since 2017, Children’s National intellectual property has served as the basis for over 15 licensing or option agreements with commercial partners.

Providing access to an array of experts and resources for pediatric innovators is one of the aims of the Children’s National Research & Innovation Campus, a first-of-its-kind focused on pediatric health care innovation, with the first phase currently open on the former Walter Reed Army Medical Center campus in Washington, D.C. With its proximity to federal research institutions and agencies, universities, academic research centers, as well as on-site incubator Johnson and Johnson Innovation – JLABS, the campus provides a rich ecosystem of public and private partners, which will help bolster pediatric innovation and commercialization.

PeriTorq, a catheter grip tool for use during pediatric cardiac interventional procedures

Five finalists selected in prestigious pediatric medical device pitch competition

Electrophysiology device innovators gain access to pediatric accelerator and will compete in September 2021 final showcase.

2019 pitch competition

Pediatric medical device pitch competition deadline extended

2019 pitch competition

Pediatric innovators pitch for up to $250,000 in FDA-funded grant awards.

The National Capital Consortium for Pediatric Device Innovation (NCC-PDI) announced today that the application deadline for its annual “Make Your Medical Device Pitch for Kids!” competition is extended one week to Feb. 22 at midnight EST. Innovators and startup companies with devices in the pediatric cardiovascular, orthopedic and spine, or NICU sectors are invited to apply for a share of up to $250,000 in FDA-funded awards and access to a newly created NCC-PDI pediatric device accelerator program led by MedTech Innovator. Submissions are being accepted now.

Up to 30 companies will be selected for the first round of competition scheduled for March 23, 2020 at the University of Maryland, College Park. Up to 10 finalists chosen from that event will compete for up to $250,000 in grant awards in Toronto, Canada on October 4. Finalists also receive a spot in the MedTech Innovator 2020 Accelerator – Pediatric Track, which provides a customized curriculum and in-depth mentorship.  Finalists will be announced in May, 2020.

This is the ninth competition in seven years hosted by NCC-PDI, one of five FDA Pediatric Device Consortia Grant Program members supporting the development and commercialization of pediatric medical devices. NCC-PDI is led by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital and the A. James Clark School of Engineering at the University of Maryland. Additional consortium members include accelerators Medtech Innovator, BioHealth Innovation and design firm partner Archimedic.

“This year’s competition focuses on three medical device areas of critical need for pediatric patients, so we want to give innovators as much time as possible to prepare their submissions,” said Kolaleh Eskandanian, Ph.D., MBA, PMP, vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI . “Our goal is to support devices that will improve care for children by helping them advance on the pathway to commercialization. We have seen how this competition can provide significant momentum for pediatric innovations, so we want to encourage as much participation as possible.”

To date, NCC-PDI has mentored over 100 medical device sponsors to help advance their pediatric innovations, notes Eskandanian, with six devices having received either their FDA market clearance or CE marking. Along with the positive exposure of presenting at this competition, she notes that the success of NCC-PDI’s portfolio companies is attributed to funding, mentorship, support from partners and facilitated interactions between device innovators and potential investors.

Eskandanian notes that enhancing access to resources for pediatric innovators is one aim of the Children’s National Research & Innovation Campus, a first-of-its-kind campus focused on pediatric healthcare innovation, currently under development on the former Walter Reed Army Medical Center campus in Washington, D.C. With its proximity to federal research institutions and agencies, universities, academic research centers, as well as on site accelerator Johnson & Johnson Innovation – JLABS, the campus will create a rich ecosystem of public and private partners which, like the NCC-PDI network, will help bolster pediatric innovation and commercialization. Opening is scheduled for December 2020.

Pediatric device competition

Premier annual pediatric medical device competition now accepting submissions

Pediatric device competition

Pediatric innovators pitch for grant awards and participation in a special accelerator program.

The official call for submissions is underway for the premiere annual pediatric medical device competition, sponsored by National Capital Consortium for Pediatric Device Innovation (NCC-PDI). The competition is led by Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital, the A. James Clark School of Engineering at the University of Maryland and non-profit accelerator MedTech Innovator. The three organizations are all an integral part of the FDA-funded NCC-PDI, which aims to facilitate the development, production and distribution of pediatric medical devices. Additional NCC-PDI members include accelerator BioHealth Innovation and design firm Archimedic.

The competition focuses on pediatric devices in three areas of critical need: cardiovascular, orthopedic and spine, and neonatal intensive care (NICU) and is now accepting applications. Contestants will pitch for a share of up to $250K in grant awards and the opportunity to participate in the MedTech Innovator 2020 Accelerator – Pediatric Track.

The first stage of competition will be held on March 23 at the University of Maryland and will include up to 30 companies selected from all submissions received. Up to 10 finalists selected from that event will move on to the “Make Your Medical Device Pitch for Kids!” finals on October 4, 2020 in Toronto, Canada. Finalists from the March qualifying round will be notified in May, 2020.

“While there is a great need for pediatric devices in many specialty areas, the development and commercialization process is very challenging because of the small market size and dynamic characteristics of the patient population,” says Kolaleh Eskandanian, Ph.D., MBA, PMP, vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI. “To provide pediatric innovators with greater support in meeting these unique challenges, we must go beyond grant funding, which is why we are collaborating with MedTech Innovator to offer an accelerator program with a pediatric track.”

To date, NCC-PDI has mentored over 100 medical device sponsors to help advance their pediatric innovations, notes Eskandanian, with six devices having received either their FDA market clearance or CE marking. She says the success of NCC-PDI’s portfolio companies is attributed to funding, mentorship, support from partners, facilitated interactions between device innovators and potential investors, and being discovered during their presentations at the signature “Make Your Medical Device Pitch for Kids!” competitions.

While advancements have been made in some pediatric specialties, there is still a critical need for novel devices in cardiovascular, orthopedic and spine, and NICU areas. On average over the past decade, only 24 percent of life-saving medical devices approved by FDA – those that go through PMA and HDE regulatory pathways – have an indication for pediatric use. Of those, most are designated for children age 12 or older. “Devices designed specifically for the younger pediatric population are vitally needed and, at this early stage of the intervention, can significantly improve developmental outcomes for a child,” Eskandanian said.

Enhancing access to resources for pediatric innovators is also one of the aims of the Children’s National Research and Innovation Campus, a first-of-its-kind focused on pediatric healthcare innovation, currently under development on the former Walter Reed Army Medical Center campus in Washington, D.C. and opening in December, 2020. With its proximity to federal research institutions and agencies, universities, academic research centers, as well as on site accelerator Johnson and Johnson Innovation – JLABS, the campus will create a rich ecosystem of public and private partners which, like the NCC-PDI network, will help bolster pediatric innovation and commercialization.

NOTE: The deadline for submissions has been extended to February 22 at midnight EST.

Nikki Gillum Posnack

Examining BPA’s impact on developing heart cells

Nikki Gillum Posnack

“We know that once this chemical enters the body, it can be bioactive and therefore can influence how heart cells function,” says Nikki Gillum Posnack, Ph.D. “This is the first study to look at the impact BPA exposure can have on heart cells that are still developing.”

More than 8 million pounds of bisphenol A (BPA), a common chemical used in manufacturing plastics, is produced each year for consumer goods and medical products. This endocrine disruptor reaches 90 percent of the population, and excessive exposure to BPA, e.g., plastic bottles, cash register receipts, and even deodorant, is associated with adverse cardiovascular events that range from heart arrhythmias and angina to atherosclerosis, the leading cause of death in the U.S.

To examine the impact BPA could have in children, researchers with Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation evaluated the short-term risks of BPA exposure in a preclinical setting. This experimental research finds developing heart cells respond to short-term BPA exposure with slowed heart rates, irregular heart rhythms and calcium instabilities.

While more research is needed to provide clinical recommendations, this preclinical model paves the way for future study designs to see if young patients exposed to BPA from medical devices or surgical procedures have adverse cardiac events and altered cardiac function.

“Existing research explores the impact endocrine disruptors, specifically BPA, have on adults and their cardiovascular and kidney function,” notes Nikki Gillum Posnack, Ph.D., a study author and assistant professor at Children’s National and The George Washington University. “We know that once this chemical enters the body, it can be bioactive and therefore can influence how heart cells function. This is the first study to look at the impact BPA exposure can have on heart cells that are still developing.”

The significance of this research is that plastics have revolutionized the way clinicians and surgeons treat young patients, especially patients with compromised immune or cardiac function.

Implications of Dr. Posnack’s future research may incentivize the development of alternative products used by medical device manufacturers and encourage the research community to study the impact of plastics on sensitive patient populations.

“It’s too early to tell how this research will impact the development of medical devices and equipment used in intensive care settings,” notes Dr. Posnack. “We do not want to interfere with clinical treatments, but, as scientists, we are curious about how medical products and materials can be improved. We are extending this research right now by examining the impact of short-term BPA exposure on human heart cells, which are developed from stem cells.”

This research, which appears as an online advance in Nature’s Scientific Reports, was supported by the National Institutes of Health under awards R00ES023477, RO1HL139472 and UL1TR000075, Children’s Research Institute and the Children’s National Heart Institute. NVIDIA Corporation provided GPUs, computational devices, for this study.

pediatric medical device competition winners

Winning innovators of pediatric medical device competition announced

_ksc2940-2

The Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Health System hosted the 4th annual Pediatric Surgical Innovation Symposium on Oct. 8. One of the highlights: Six pediatric medical device innovations that address a significant unmet need were awarded a total of $250,000 in grant money by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI).

Kurt Newman, M.D., President and CEO of Children’s National said: “Even though they are a small portion of the patient population, it’s critical for children to have medical devices that are built specifically for them. Children’s National is committed to bringing together the key stakeholders including innovators, clinicians, policy makers, and investors, to support advancements in the care of children.”

“We are honored to recognize these exciting innovations with this funding,” said Kolaleh Eskandanian, Ph.D., Executive Director of NCC-PDI and the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National. “It takes millions of dollars to bring a device to market and our program provides the funding needed to bridge the critical gap that often follows the prototyping phase in life cycle of the device.”

       Winning innovations receiving $50,000 awards are:

  • Maternal Life, Palo Alto, Calif. – low-cost closed system that captures and administers colostrum to newborns with zero percent loss
  • JustRight Surgical, Louisville, Colo. – second generation surgical 5mm stapler scaled for a wider range of pediatric surgical procedures and bringing the benefits of laparoscopy to patients
  • Lully, San Francisco – moisture sensor and Smart Pod monitor wirelessly connected to a smartphone app to prevent bedwetting episodes
  • Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore – low-cost, disposable multifunctional incubator for at-risk, low-birth-weight babies

Winning innovations receiving $25,000 awards are:

  • Nebula Industries, Melrose, Mass. – quick-release medical tape to prevent neonatal and pediatric skin injuries
  • May & Meadow, Inc., Redwood City, Calif. – low-cost, mobile medical device for assessing feeding ability in infants at risk for feeding problems