Tag Archive for: Low-grade glioma

model of the brain

A new way to treat pediatric gliomas with BRAF V600 mutations

model of the brain

Gliomas account for 45% of all pediatric tumors of the central nervous system.

Gliomas, which can be classified according to histologic grade as high or low grade, account for 45% of all pediatric tumors of the central nervous system. Detection of the BRAF V600E mutation in pediatric low-grade glioma has been associated with a lower response to standard chemotherapy. In previous trials, dabrafenib (both as monotherapy and in combination with trametinib) has shown efficacy in recurrent pediatric low-grade glioma with BRAF V600 mutations, findings that researchers found warrant further evaluation of this combination as first-line therapy.

The big picture

In a recent study published in the New England Journal of Medicine, experts found that among a randomized cohort of 110 children with low-grade glioma with BRAF V600 mutations, dabrafenib plus trametinib resulted in significantly more responses, longer progression-free survival and a better safety profile than standard chemotherapy as first-line therapy.

“For the past 20 to 30 years, the only effective safe therapy was chemotherapy. In older children, radiation can also be effective, but there’s reluctance on using radiation on a developing brain,” said Roger Packer, M.D., director of the Brain Tumor Institute at Children’s National Hospital and co-author of the study. “As we learned the specific molecular genetic makeups of these tumors, either high- or low-grade gliomas, we found it to be effective to use molecular therapies. These are safer and more effective than chemotherapy alone.”

Dr. Packer also added that there’s approval from the FDA, proving that the industry sees value in investing in pediatrics.

Why it matters

This randomized trial shows the superiority of dabrafenib plus trametinib as a first systemic therapy for pediatric patients with low-grade glioma with BRAF V600 mutations as compared with carboplatin plus vincristine, the standard chemotherapy approach. This benefit was evident in the higher independently determined response, longer progression-free survival and better side-effect profile as reflected in the lower frequency of treatment discontinuation because of toxicity.

“Children treated with a molecular targeted therapy could safely tolerate the therapy and had better outcomes than children who were treated with chemotherapy,” Dr. Packer added.

Overall, these findings show the value of early molecular testing in children with low-grade glioma to determine the presence or absence of BRAF V600 mutations.

You can read the full study “Dabrafenib plus Trametinib in Pediatric Glioma with BRAF V600 Mutations” here.

Marius George Linguraru

$1M grant funds research on quantitative imaging for tumors

“For children who are at risk of losing their vision, this project will bring a window of opportunity for physicians to start treatment earlier and save their vision,” says Marius George Linguraru, DPhil, MA, MSc.

A team from Children’s National Hospital is part of a project receiving a two-year grant of nearly $1,000,000 from the National Institutes of Health (NIH) for the first pediatric project in the Quantitative Imaging Network (QIN) of the National Cancer Institute (NCI). Marius George Linguraru, DPhil, MA, MSc, principal investigator from the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital in Washington, D.C., is one of two principal investigators on the project, which focuses on developing quantitative imaging (QI) tools to improve pediatric tumor measurement, risk predictions and treatment response. Roger Packer, M.D., Senior Vice President of the Center for Neuroscience & Behavioral Health, Director of the Gilbert Neurofibromatosis Institute and Director of the Brain Tumor Institute, is co-investigator.

The project, in collaboration with Children’s Hospital of Philadelphia and Children’s Hospital Colorado, centers on the most common type of brain tumor in children, called a low-grade glioma. This project focuses on a clinically challenging group of children with neurofibromatosis type 1 (NF1), the most common inherited tumor predisposition syndrome. Nearly 20% of children with NF1 will develop a low-grade glioma called optic pathway glioma (OPG). In children with this type of brain tumor, the growth occurs around the optic nerve, chiasm and tracts, also called the optic pathway, which connects the eye to the brain. OPGs can cause vision loss and even blindness. Permanent vision loss usually occurs between one and eight years of age with doctors closely monitoring the tumor with magnetic resonance imaging (MRI) to assess the disease progression.

“Our traditional two-dimensional measures of tumor size are not appropriate to assess the changes in these amorphous tumors over time or how the tumor responds to treatment,” says Linguraru. “This means physicians have difficulty determining the size of the tumor as well as when treatment is working. Research such as this can lead to innovative medical technologies that can improve and possibly change the fate of children’s lives.”

Dr. Linguraru is leading the technical trials on this project, which take place in the first two years, or phase one, starting in June 2020. Phase one focuses on improving the often inaccurate human measurements of tumor size by developing QI tools to make precise and automated measures of tumor volume and shape using machine learning. In this phase, the project will use and homogenize MRI data from multiple centers to develop predictive models of the treatment response based on the tumor volume that are agnostic to the differences in imaging protocols. By doing this, it will allow physicians to make more informed decisions about the treatment’s success and whether the child will recover their vision.

When phase one is complete, Linguraru and the project’s other principal investigator Robert A. Avery, DO, MSCE, neuro-ophthalmologist in the Division of Ophthalmology at Children’s Hospital of Philadelphia, will initiate the second phase, which includes validating the QI application on data from the first ever phase III clinical trial comparing two treatments for NF1-OPGs. Phase two is scheduled to start in the Summer 2022 and continue through Summer 2025.

“For children who are at risk of losing their vision, this project will bring a window of opportunity for physicians to start treatment earlier and save their vision,” says Linguraru. “For those children who won’t benefit from chemotherapy because the tumor poses no threat to their sight, this project will save them from having to go through that difficult treatment unnecessarily. It will be life-changing for the children and their families, which is what excites me about this QI application.”

This project is a collaboration between Children’s Hospital of Philadelphia and Children’s National Hospital in Washington, D.C., in partnership with Children’s Hospital of Colorado and University of Pennsylvania. Upon project completion, the QI application will provide a precision-medicine approach for NF1-OPGs and improve clinical outcomes for pediatric tumors.

Roger Packer examines a patient

New guidelines advance treatment approach for children with low-grade gliomas

Roger Packer examines a patient

“We believe our understanding of LGGs combined with novel therapies will soon lead to a new standard of care for children,” says Roger J. Packer, M.D. “We are optimistic about the future for patients with this disease.”

Patients with low-grade gliomas (LGGs) will benefit from new recommendations from a group led by Roger J. Packer, M.D., senior vice president for the Center for Neuroscience and Behavioral Medicine, as well as clinicians, researchers and industry leaders from around the world, that were recently published in Neuro-Oncology. The new framework for LGGs will significantly advance the future of care for patients with these complex diseases and set a new path to expedite the translation of scientific advances into clinical care. The recommendations build on a treatment approach developed more than 25 years ago by Dr. Packer and his colleagues that revolutionized care for LGGs.

LGGs are both common and complicated, and one treatment approach does not work for all cases. Until now, there has not been a standardized way to categories the tumors to prescribe more effective and personalized treatment options. The new guidelines will provide clinicians with one mutually agreed upon set of recommendations to further advance the field and better diagnose and treat patients with LGGs.

Topics within the framework include:

  • Implications of the growing understanding of genomics underlying these tumors and how to apply to clinical practice
  • The need for more and better model systems to assess the likely benefits of new treatments for LGGs before exposing patients to new therapy
  • A review and assessment of what is needed for the design of future clinical trials
  • Evaluation of current therapies and the steps needed to expedite molecularly targeted therapy into late-stage clinical trials, including in those newly diagnosed with the disease so as to avoid less-personalized chemotherapy or radiotherapy

“We believe our understanding of LGGs combined with novel therapies will soon lead to a new standard of care for children,” says Dr. Packer.  “We are optimistic about the future for patients with this disease.”