Tag Archive for: Immunology

teenager receiving an intravenous infusion

Novel cell therapy treatments offer promise to immune-compromised children

teenager receiving an intravenous infusion

In a first-of-its-kind clinical trial, researchers found that intravenous therapies made from virus-specific T-cells (VST) can effectively treat immunocompromised pediatric patients, far surpassing the current standard of care, according to new research published in Nature Communications.

More than 60% of patients in the phase 2 clinical trial led by investigators from Children’s National Hospital and Huntsman Cancer Institute responded to the innovative VST therapy. This new treatment uses blood from healthy donors to manufacture a highly specialized immune therapy that, when given to immune-compromised patients, prompts their immune system to fight off potentially life-threatening viruses, including cytomegalovirus, Epstein-Barr and adenovirus. Without this therapy, estimates suggest that less than 30% of patients would recover, using standard protocols.

“A vast majority of our patients not only responded to the therapy, but they were able to come off their antivirals, which come with extensive side effects,” said Michael Keller, M.D., the paper’s first author and the Translational Research Laboratory director at the Children’s National Cell Enhancement and Technologies for Immunotherapy (CETI) program. “This promising data suggests hope for patients with rare immune-compromising diseases that leave them vulnerable to so much in the world.”

The study brings together experts from the Pediatric Transplantation and Cell Therapy Consortium (PTCTC) and the Primary Immune Deficiency Treatment Consortium (PIDTC) to create the first multi-center, pediatric-consortium trial of adoptive T-cell therapies for viruses. It also represents one of the first to include critically ill patients, who are often excluded from research.

Children’s National leads the way

Working alongside Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research (CCIR), Dr. Keller and the CCIR team helped build an internationally recognized program, pioneering therapies to prevent complications from viral infections in immunocompromised patients. This includes patients with congenital immune deficiency and others who have undergone bone marrow transplantation for malignancies or non-malignant conditions, such as sickle cell disease.

While doctors can treat some immune-compromised patients for infections with standard antivirals, a small fraction don’t respond. Children’s National is one of a handful of hospitals in the country that has options. Over the last several decades, researchers have found ways to develop VST therapies made from banked T-cells, a more advanced application of how donated red blood cells are used to treat anemia.

In 2017, Drs. Keller and Bollard started collaborating with Michael Pulsipher, M.D.—now with Intermountain Primary Children’s Hospital and the Huntsman Cancer Institute at the University of Utah—to create a multi-institute clinical study. They combined the expertise at Children’s National in producing and banking cell therapy products with the community built around the PTCTC. Ultimately, they launched a clinical trial that was open to 35 centers in the U.S., enrolling 51 patients at 22 hospitals from 2018-2022.

“We wanted to prove that this potentially life-saving therapy could be given safely at regional pediatric centers that had never been able to use this approach before,” said Dr. Pulsipher, who served as the study’s co-principal investigator with Dr. Keller. “We united top experts in this area from the PTCTC and PIDTC and successfully treated some of the most challenging patients ever treated with this approach. Our findings helped define who can benefit the most from this therapy, paving the way for commercial development.”

The Good Manufacturing Practices (GMP) laboratory at Children’s National, led by Patrick Hanley, Ph.D., provided suitable VST therapies for 75 of 77 patients who requested to join the study. Clinical responses were achieved in 62% of patients who underwent stem cell transplants and in 73% of patients who were treated with VST and evaluated one month after their infusion. The paper laid out risks and clinical factors impacting outcomes when third-party donors are used to manufacture the VST therapies.

What’s ahead

Given that researchers are only beginning to develop cell therapies, work remains to understand the many ways they interact with the immune system. In a separate paper also recently published in Nature Communications, members of the multi-institute team documented a case of an infant with severe combined immune deficiency, who faced extremely rare side effects when the VST treatment interfered with her donor bone marrow graft. The case led the team to work with the Food and Drug Administration to identify criteria for VST donors enrolled in this study to mitigate complications.

In the decade ahead, Dr. Bollard sees promise in cell therapies for patients with cancer, immune deficiencies after transplant and dozens of other disorders, including genetic and autoimmune diseases. “Future studies will continue to look at ways to optimize the manufacturing, the administration and the long-term outcomes for these therapies—and to enhance the lifelong impact on our patients,” she said. “When we pair human ingenuity with the power of technology, I see tremendous potential.”

Acknowledgments: This study was funded with a nearly $5 million grant from the California Institute of Regenerative Medicine and was run through the operations center at the Children’s Hospital of Los Angeles, where Dr. Pulsipher was formerly on faculty.

Drs. Robert Keating, Brian Rood and Catherine Bollard

Children’s National announces new professorships

Drs. Robert Keating, Brian Rood and Catherine Bollard

Robert Keating, M.D., Brian Rood, M.D., and Catherine Bollard, M.D., M.B.Ch.B.

Children’s National Hospital named Robert Keating, M.D., as the McCullough Distinguished Professor of Neurosurgery. He serves as the chief of neurosurgery and co-director of the high-intensity focused ultrasound (HIFU) program at Children’s National.

Children’s National Hospital named Brian Rood, M.D., as the Kurt D. Newman, M.D., Professor of Neuro-Oncology. He serves as director of clinical neuro-oncology and medical director of the Brain Tumor Institute at Children’s National.

Children’s National Hospital elevated Catherine Bollard, M.D., M.B.Ch.B., to the Dr. Robert J. and Florence T. Bosworth Distinguished Professor of Cancer and Transplantation Biology Research. She is the Interim Executive Vice President and Chief Academic Officer and Interim Director, Children’s National Research Institute. She also serves as the director of the Center for Cancer and Immunology Research and director of the Program for Cell Enhancement and Technologies for Immunotherapy at Children’s National.

About the awards

Professorships at Children’s National support groundbreaking work on behalf of children and their families and foster new discoveries and innovations in pediatric medicine. These appointments carry prestige and honor that reflect the recipient’s achievements and donor’s forethought to advance and sustain knowledge. Children’s National is grateful for its generous donors, who have funded 47 professorships.

Dr. Keating is a longstanding leader in neurosurgery research and care. His areas of expertise include brain tumors, traumatic brain injuries, craniofacial anomalies, Chiari malformations and spinal dysraphism. With Dr. Keating’s leadership, the neurosurgery department is pioneering innovations such as HIFU, a non-invasive therapy using focused ultrasound waves to ablate a focal area of tissue. It can treat tumors located in difficult locations of the brain, movement disorders and epilepsy. Children’s National was one of the first pediatric hospitals in the nation to use HIFU for neuro-oncology patients.

“Our goal is to elevate our top-ranked program to even greater heights,” says Dr. Keating. “We will continue to use cutting-edge technology and non-invasive approaches to make the knife obsolete in pediatric neurosurgery and improve outcomes for children.”

Dr. Rood studies the biology of pediatric brain tumors. He focuses on protein signatures and biomarkers specific to different types of brain cancers. His study of neoantigens is informing the development of T-cell immunotherapies to target a tumor’s unique proteins.

“Immunotherapy is revolutionizing how we treat childhood brain tumors — safely, effectively and with the precision made possible by using a patient’s own cells,” says Dr. Rood. “This professorship enables our team to advance this revolution, which will save lives and improve lifetimes.”

Dr. Bollard received the Dr. Robert J. and Florence T. Bosworth Professor of Cancer and Transplantation Biology Research in 2018 to support her work to develop cell and gene therapies for patients with cancer and underlying immune deficiencies. Her professorship has been elevated to a distinguished professorship to amplify her research and celebrate her accomplishments in the field of immunotherapy.

About the donor

These appointments were made possible through an extraordinary $96 million investment from an anonymous donor family for rare pediatric brain tumor research and care. It is one of the hospital’s largest donations and will transform the hospital’s ability to give patients with rare brain cancer a better chance at healthy lifetimes.

The anonymous family brings a depth of compassion for children facing rare and often challenging diagnoses. Their partnership will immediately advance every aspect of our globally recognized leadership to create new, more effective treatments.

Their investment also endowed the Professorship in Molecular Neuropathology. We look forward to bestowing that honor on a Children’s National pediatric leader.

Eugene Hwang

Eugene Hwang, M.D., named as William Seamus Hughes Professor of Neuro-oncology and Immunology

Eugene HwangChildren’s National Hospital named Eugene Hwang, M.D., the inaugural William Seamus Hughes Professor of Neuro-oncology and Immunology. This professorship is the first at Children’s National to focus exclusively on these two pediatric specialties.

Dr. Hwang serves as associate chief of oncology, director of the Clinical Neuro-oncology Immunotherapeutics Program and director of the Neuro-oncology Fellowship Program. He is an associate professor of pediatrics at the George Washington University School of Medicine and Health Sciences.

About the award

Dr. Hwang joins a distinguished group of 42 Children’s National physicians and scientists who hold an endowed chair. Professorships at Children’s National support groundbreaking work on behalf of children and their families and foster new discoveries and innovations in pediatric medicine. These appointments carry prestige and honor that reflect the recipient’s achievements and donor’s forethought to advance and sustain knowledge.

Dr. Hwang has dedicated much of his career to the pursuit of new therapies that improve outcomes for children with brain cancer. He has led many early phase clinical trials on immunotherapeutics, gene therapy and new targeted agents. He participates in international studies focused on reducing harmful side effects of standard treatments. He serves as the principal investigator for the Pediatric Brain Tumor Consortium and co-chairs their Immunotherapy Working Group. Dr. Hwang also lends his time to grant review committees and the scientific advisory boards of several large foundations.

Claire and Kevin Hughes, through their vision and generosity, are ensuring that Dr. Hwang and future holders of this professorship will launch new initiatives to rapidly advance the fields of pediatric neuro-oncology and immunotherapy, elevate our leadership and improve outcomes for children diagnosed with brain cancer.

About the donors

Claire and Kevin Hughes established this professorship with support from community partners in loving memory of their son William Seamus Hughes (Willie). Their dedication to giving all children a chance for life has helped launch groundbreaking trials and research at Children’s National, including one of the first trials in the U.S. to use cell therapy to treat brain tumors.

“Working with Willie meant working with a young man who embodied a resilient, cheerful spirit that was truly remarkable,” said Dr. Hwang. “It meant fighting side-by-side with a walking inspiration, who I continue to remember and who continues to drive the mission of curing childhood brain cancer. I’m deeply honored to ensure that Willie’s spirit and bravery lives on in the promise to other families that face a devastating brain tumor diagnosis.”

Epstein-Barr virus

Study with largest cohort in the Western world sheds light on Epstein-Barr virus

Epstein-Barr virus

Epstein-Barr virus is a member of the herpes family and it spreads primarily through saliva.

Children’s National Hospital experts provided a contemporary description of the epidemiology, clinical presentation and management of chronic active Epstein-Barr virus (CAEBV), shedding light on this very rare disease. The paper, published in Blood Advances, assessed 57 patients outside of Asia — the biggest international retrospective cohort study published in the Western world.

Epstein-Barr virus is a member of the herpes family and it spreads primarily through saliva. Once a person is infected with Epstein-Barr virus, the immune system will control the infections, but the virus lies in a dormant state in the patient’s B Cells. However, in some patients, there is a failure of the body to control the infection, and the virus is found inside the patient’s T and/or NK cells. These rare patients are diagnosed with CAEBV. The hallmark of the disease is proliferation of Epstein-Barr virus-infected T or NK cells that infiltrate tissues, leading to end-organ damage. Patients most often experience fevers, hepatosplenomegaly, liver inflammation, cytopenias and lymphoproliferation that may progress to lymphoma.

Given it is most prevalent in Asia, little is known about the disease in the Western world. There has only been one published paper regarding the outcomes of patients in the U.S., which included 19 patients amassed over 28 years, and was published a decade ago.

Multiple treatments have been attempted to control the disease, but none have resulted in consistent remission. Historically, the consensus is to use steroids and/or antiviral drug in combination with proteasome inhibitor agents. In some cases, clinicians also use cytotoxic chemotherapy to reduce disease burden and improve the patient’s condition before HSCT. Still, this approach is limited because most patients die due to the progression of their disease despite these interventions.

Ultimately, most of these patients are referred for allogeneic hematopoietic stem cell transplantation (HSCT), which is the only known curative therapy for CAEBV. However, the best approach to control disease prior to HSCT, as well as the optimal conditioning regimen, are unknown.

“For the first time in many years, we provide insight on contemporary treatment options to consider for patients with CAEBV, as well as identifying risk factors for worse outcomes,” said Blachy Dávila Saldaña, M.D., blood and marrow transplant specialist at Children’s National and lead author of the study. “HSCT is curative, but patients need to be considered prior to the evolution of more advanced disease, particularly lymphoma. We also provide a new platform that will inform research on new interventions and therapies for this population.”

“CAEBV remains a challenging disorder to treat, especially once severe complications develop,” said Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National. “However, our data suggests that T cell modulating therapies may enhance disease control, and future studies should address this question in a controlled setting.”

Future steps also include performing genetic studies to identify those at risk of developing the disease, and developing new platforms for treatment, including checkpoint inhibitors and cytotoxic lymphocyte therapies (CTL’s), which is a form of adoptive immunotherapy that employs virus-specific T cells.

The cohort includes patients treated in CNH and multiple institutions around the world, including Texas Children’s and the National Institutes of Health. “This work was only possible through our collaborative research in anti-EBV cellular therapies,” said Dr. Dávila.

Muller Fabbri

Children’s National Hospital welcomes Muller Fabbri, M.D., Ph.D.

Muller Fabbri

Dr. Fabbri joins Children’s National from the University of Hawaii Cancer Center, where he was a tenured associate professor and leader of the Cancer Biology Program. He received his medical degree at the University of Pisa in Italy and his Ph.D. degree at the Second University of Naples in Italy.

Children’s National Hospital is pleased to announce it has selected Muller Fabbri, M.D. Ph.D., as associate director for the Center for Cancer and Immunology Research at the Children’s National Research Institute. In this role, he will build and lead the Cancer Biology Program while developing and conducting basic and translational research. Dr. Fabbri will also develop multidisciplinary research projects with various clinical divisions, including oncology, blood and marrow transplantation, pathology and hematology.

A distinguished lecturer, instructor, researcher, public speaker and mentor, Dr. Fabbri’s research interest focuses on decoding cancer cellular biology riddles that lead to personalized medicine. He has pioneered a theory that explains non-coding RNAs’ functioning in intercellular communication that promotes cancer cell growth, dissemination and drug resistance. To better understand the immune response against cancer cells, he has investigated the role of exosomes and other extracellular vesicles. Inflammation, tumor microenvironment and immunity, as it relates to cancer, are other research areas of interest.

“I feel fortunate to be working with Dr. Catherine Bollard and her team at an extraordinary research center,” said Dr. Fabbri. “I am eager to join Children’s National, and I look forward to learning from this leadership team, which also includes Dr. Vittorio Gallo, Dr. Mark Batshaw and Dr. Jeffery Dome.”

Dr. Fabbri was drawn to Children’s National because of its proximity to partners like the National Institute of Health (NIH), the Food Drug Administration (FDA), various universities and the private sector, fostering a rich scientific environment. One of Dr. Fabbri’s many goals, is to make sure that the Cancer Biology Program plays a central role in the acquisition of an NCI-Designated Cancer Center recognition often given to institutions that stand out in scientific leadership and clinical research.

Dr. Fabbri joins Children’s National from the University of Hawaii Cancer Center, where he was a tenured associate professor and leader of the Cancer Biology Program. He received his medical degree at the University of Pisa in Italy and his Ph.D. degree at the Second University of Naples in Italy.

Screenshot of Drs. Northam, Newman and Batshaw

4th Annual Children’s National Hospital-NIAID Virtual Symposium

Screenshot of Drs. Northam, Newman and Batshaw

Keynote speaker Virginia Governor and pediatric neurologist, Ralph Northam, joined Dr. Kurt Newman, president and CEO of Children’s National Hospital, and Dr. Mark Batshaw, executive vice president, physician-in-chief and chief academic officer at Children’s National Hospital, during the 4th Annual Children’s National Hospital-NIAID Virtual Symposium.

Children’s National Hospital and the National Institute of Allergy and Infectious Diseases (NIAID) hosted their 4th annual symposium, attracting nationwide researchers, trainees and health care professionals to share updates on the COVID-19-related condition known as Multisystem Inflammatory Syndrome (MIS-C) in Children, allergy and immunology in the pediatric population.

“Children’s National relationship with the NIAID is a strategic and novel alliance that benefits children everywhere,” said Kurt Newman, M.D., President and CEO of Children’s National Hospital. “I’m so proud of our unique partnership and how it has enriched the high-quality research being conducted at Children’s National and enabled us to interact on pressing health issues. With the opening of our new Children’s National Research & Innovation Campus on the grounds of the former Walter Reed Army Medical Center, the sky is the limit to how we can work together with the NIAID to innovate for kids so that we help them grow up stronger.”

The discussions at the symposium centered around various topics, including clinical manifestations of SARS-CoV-2 in children, comparative disease biology manifestation in children and adults, therapies and vaccines in the pediatric setting, intersectionality of allergy, immunology and COVID-19, modulating biologic factors in immune regulation and treatments that invoke tolerance in allergy.

Keynote speaker Virginia Governor and pediatric neurologist, Ralph Northam, spoke about the COVID-19 pandemic and strategies to reintroduce children into schools and sports.

“Schools provide stability and structure. We know that children need to be in school for educational achievements and their mental health, but it has taken time to make school staff and families more comfortable with a greater time of in-person learning,” said Dr. Northam. “Our goal is to have all in-person learning this fall. That is where our children need to be because it is the safest place for children.”

During the keynote session, Dr. Northam also addressed the mental health issues related to the pandemic where pediatricians have seen an increase in depression and suicide rates.

“As we move forward to a back more normal life, we need to keep an eye on these children and make sure that they continue to get the support and treatment that they need,” said Dr. Northam.

Below are the speakers and the focus of their presentations.

  • Post-COVID cardiac manifestations in children: Anita Krishnan, M.D., Children’s National
  • Immunomodulation and Cytokine Profiling in MIS-C: Hemalatha Srinivasalu, M.D., Children’s National
  • The MUSIC study: Long-TerM OUtcomes After the Multisystem Inflammatory Syndrome in Children: Jane Newburger, M.D., Boston Children’s Hospital
  • MIS-C in Typical Cases and Down Syndrome: Dusan Bogunovic, M.D., Mount Sinai
  • Age-Related Virus-Specific T-Cell Responses to SARS-CoV-2: Susan Conway, M.D., Children’s National
  • Systems Immunology of COVID-19: Integrating Patient and Single Cell Variations: John Tsang, Ph.D., NIAID
  • Therapeutics for Children with COVID-19: Trying to be Data Driven in the Absence of Pediatric Trials: Andy Pavia, M.D., University of Utah
  • SARS-CoV-2 Vaccine Clinical Research: Alicia Widge, M.D., NIAID
  • Implementation and Public Health Aspects: Cara Biddle, M.D., M.P.H., Children’s National
  • COVID-19 and Pediatric Asthma: William Sheehan, M.D., Children’s National
  • The COVID-19 Pandemic and Immunodeficiency: The Burden and Emerging Evidence: Jessica Durkee-Shock, M.D., NIAID
  • SARS-CoV-2 Infection in Children with Cancer: The MSK Experience: Andy Kung, M.D., Memorial Sloan Kettering
  • Adaptive and Maladaptive Immunity to the Microbiota: Implication for Inflammatory Disorders: Yasmine Belkaid, M.D., NIAID
  • Deep Immune Profiling of Peanut Reactive CD4+ T-Cells Reveals Distinct Immunotypes Link to Clinical Outcome: Erik Wambre, M.D., Benaroya Research Institute
  • B Cells and Food Allergy: Not Just for Making IgE: Adora Lin, M.D., Ph.D., Children’s National
  • Emerging Biologic Therapies for Food Allergy: Hemant Sharma, M.D., Children’s National
  • The Promise and Limits of Allergen Immunotherapy: Carla Davis, M.D., Texas Children’s
  • Maternal Fetal Interactions in Food Tolerance: Michiko Oyoshi, M.D., Harvard Medical School

The Clinical and Translational Science Institute at Children’s National (CTSI-CN) and the NIAID organized the 4th annual symposium and wished to showcase some of the critical research being done on this worldwide infectious disease, particularly amongst the pediatric population and those affected with allergic and immunologic disease. By sharing this work, they hope it will help continue to drive the advancement of pediatric research in relation to this disease.

The research partnership between Children’s National and the National Institute of Allergy and Infectious Diseases (NIAID) is devoted to protecting and advancing the health of children with allergic, immunologic, autoinflammatory and infectious diseases through collaborative research and education. The partnership co-hosts an annual symposium to disseminate new information about science related to the partnership.

To view all the presentations from the symposium, click here.

For questions about the symposium or projects there, contact: CN-NIAIDPartnership@childrensnational.org.

NIAID Symposium banner

Dr. Catherine Bollard is accompanied by her mentees

Catherine Bollard, M.D., awarded two notable recognitions

Dr. Catherine Bollard is accompanied by her mentees

Dr. Catherine Bollard and some of her mentees.

For her work on developing cell-based therapies and dedication to her trainees, Catherine Bollard, M.D., MBChB, director of the Center for Cancer and Immunology Research at Children’s National hospital, receives two outstanding awards in her field.

Celebrating the minds behind the architecture of modern medicine and influencing the drug industry, The Medicine Maker, through an international panel of judges, added Dr. Bollard to the 2021 Power List in the category of advanced medicine.

Dr. Bollard mentioned that it is encouraging to see mRNA vaccine technology successfully fighting the COVID-19 pandemic because it paves the way for cancer vaccine advancements. Still, there are challenges affecting drug development. The centralized manufacturing hinders the large-scale production of patient-specific products as more cell therapies are getting approval, she added.

“Looking to the future, cell-based therapies will not be sustainable with a purely patient-specific centralized manufacturing model and, therefore, the field must move into the development of off-the-shelf cell therapies,” said Dr. Bollard. “The success of off-the-shelf virus-specific T-cells is especially exciting because it has the potential to be the platform for other antigen-specific and CAR-T cell therapies.”

A global society of clinicians, researchers, regulators, technologists and industry partners, The International Society for Cell & Gene Therapy (ISCT), will bestow Dr. Bollard the 2021 ISCT Darwin J. Prockop Mentoring Award on May 26. Her ongoing commitment to mentorship has advanced the careers of many aspiring professionals that have worked alongside her. The ISCT Award Committee selected someone that can inspire the current and future growing workforce. Dr. Bollard is highly recognized across the industry for her leadership, passion and dedication to her mentees, and her extraordinary efforts to advance their skills, capabilities and opportunities.

Dr. Catherine Bollard is accompanied by her mentees

To Patrick Hanley, Ph.D., chief and director of the Cellular Therapy Program at Children’s National, Dr. Bollard is the most deserving mentor for this award. She has provided advice and guidance to over 93 individuals, including 22 junior faculty, 27 post-doctoral fellows and 12 graduate students. Dr. Bollard also acts as a mentor to other senior investigators at Children’s National, particularly those in the Bone Marrow Transplantation division.

“For the past 15 years, Cath has been a strong mentor, friend, advocate, and voice of reason for me and has been instrumental in my success, both at Baylor College of Medicine and now at Children’s National,” said Hanley. “With her support and mentorship, I have been fortunate to publish high impact papers, earn a number of awards and receive prestigious grants. Without her guidance this wouldn’t have been possible.”

Amy Hont, M.D., oncologist for the Center for Cancer and Immunology Research at Children’s National, mentioned that Dr. Bollard is endlessly dedicated to her mentees and staff. “Dr. Bollard has been incredibly supportive of my research career throughout my training and progression to faculty. I feel very fortunate that I have been able to benefit not only from her unparalleled knowledge and expertise, but also her career advice and resources.”

Dr. Bollard leads clinical and research efforts to fight cancer and other inflammatory diseases by strengthening the immune system using adoptive cell therapy. She is a former president of the International Society of Cellular Therapy, and the current president of the Foundation for the Accreditation for Cellular Therapy (FACT). As a distinguished hematologist, immunologist and immunotherapist, she is working to develop cell and gene therapies for patients with cancer, viral infections and immune mediated diseases. She is especially interested in bone marrow and cord blood transplantation and improving outcomes after such transplant by decreasing infectious complications and preventing relapse. Dr. Bollard also has a specific interest in targeting viral infections in immune-suppressed patient populations, including individuals living with the human immunodeficiency virus.

antibodies attacking t-cell

Immunocompromised pediatric patients show T-cell activity against SARS-CoV-2

antibodies attacking t-cell

The study, published in the Journal of Clinical Immunology, suggests that patients with antibody deficiency disorders, including inborn errors of immunity (IEI) and common variable immunodeficiency (CVID), can mount an immune response to SARS-CoV-2 and proposes that vaccination may still be helpful for this population.

According to data from a cohort of adult and pediatric patients with antibody deficiencies, patients that often fail to make protective immune responses to infections and vaccinations showed robust T-cell activity and humoral immunity against SARS-CoV-2 structural proteins. The new study, led by researchers at Children’s National Hospital, is the first to demonstrate a robust T-cell response against SARS-CoV-2 in immunocompromised patients.

“If T-cell responses to SARS-CoV-2 are indeed protective, then it could suggest that adoptive T-cell immunotherapy might benefit more profoundly immunocompromised patients,” said Michael Keller, M.D., director of the Translational Research Laboratory in the Program for Cell Enhancement and Technologies for Immunotherapy (CETI) at Children’s National. “Through our developing phase I T-cell immunotherapy protocol, we intend to investigate if coronavirus-specific T-cells may be protective following bone marrow transplantation, as well as in other immunodeficient populations.”

The study, published in the Journal of Clinical Immunology, showed that patients with antibody deficiency disorders, including inborn errors of immunity (IEI) and common variable immunodeficiency (CVID), can mount an immune response to SARS-CoV-2. The findings propose that vaccination may still be helpful for this population.

“This data suggests that many patients with antibody deficiency should be capable of responding to COVID-19 vaccines, and current studies at the National Institutes of Health and elsewhere are addressing whether those responses are likely to be protective and lasting,” said Dr. Keller.

The T-cell responses in all the COVID-19 patients were similar in magnitude to healthy adult and pediatric convalescent participants.

Kinoshita et al. call for additional studies to further define the quality of the antibody response and the longevity of immune responses against SARS-CoV-2 in immunocompromised patients compared with healthy donors. Currently, there is also very little data on adaptive immune responses to SARS-CoV-2 in these vulnerable populations.

The study sheds light on the antibody and T-cell responses to SARS-CoV-2 protein spikes based on a sample size of six patients, including a family group of three children and their mother. All have antibody deficiencies and developed mild COVID-19 symptoms, minus one child who remained asymptomatic. Control participants were the father of the same family, who tested positive for COVID-19, and another incidental adult (not next of kin) experienced mild COVID-19 symptoms. The researchers took blood samples to test the T-cell response in cell cultures and provided comprehensive statistical analysis of the adaptive immune responses.

“This was a small group of patients, but given the high proportion of responses, it does suggest that many of our antibody deficient patients are likely to mount immune responses to SARS-CoV-2,” said Dr. Keller. “Additional studies are needed to know whether other patients with primary immunodeficiency develop immunity following COVID-19 infection and will likely be answered by a large international collaboration organized by our collaborators at the Garvan Institute in Sydney.”

Dr. Michael Hsieh's clay shield

Innovative urologist Michael Hsieh takes unbeaten path

Dr. Michael Hsieh's clay shield

For an elementary school art project, Michael H. Hsieh, M.D., Ph.D., was instructed to fashion a coat of arms out of clay. In addition to panels for truth, justice and Taiwan, in the shield’s M.D. panel, a snake twists around a rod, like the staff for Asclepius, a Greek god associated with healing.

Children’s urologist Michael H. Hsieh, M.D., Ph.D., knew from age 10 that he would become a doctor. Proof is at his parents’ home. For an elementary school art project, students were instructed to fashion a coat of arms out of clay. In addition to panels for truth, justice and Taiwan, in the shield’s M.D. panel, a snake twists around a rod, like the staff for Asclepius, a Greek god associated with healing.

“I liked science. When I can use it to help patients, that is very rewarding,” says Dr. Hsieh, the first doctor in his family.

These days, Dr. Hsieh’s Twitter profile serves as a digital coat of arms, describing him as “tinker, tailor,” #UTI #biologist, epithelial #immunologist, helminthologist and #urologist.

Tinker/tailor is shorthand for the mystery drama, “Tinker Tailor Solider Spy,” he explains, adding that the “tinker” part also refers “to the fact that I am always questioning things, and science is about experimentation, trying to seek answers to questions.”

While still in medical school during a rotation Dr. Hsieh saw a bladder operation on a young child and thought it was “amazing.” That experience in part inspired Dr. Hsieh to become a urologist and bladder scientist. His training in immunology and study of the bladder naturally led him to study urinary tract infections and parasitic worms that affect the urinary tract. In addition, thanks to R01 funding from the National Institutes of Health (NIH), Dr. Hsieh is co-principal investigator with Axel Krieger, University of Maryland, and Jin U. Kang, Johns Hopkins, on a project to develop imaging robots for supervised autonomous surgery on soft tissue.

The $1 million in NIH funding pushes the boundaries on amazing by using multi-spectral imaging technology and improved techniques to reduce surgical complications.

Anastomosis is a technique used by surgeons to join one thing to another, whether it’s a vascular surgeon suturing blood vessels, an orthopedic surgeon joining muscles or a urologist stitching healthy parts of the urinary tract back together. Complications can set in if their stitching is too tight, prompting scar tissue to form, or too loose, letting fluid seep out.

“The human eye can see a narrow spectrum of electromagnetic radiation. These multi-spectral imaging cameras would see across greater set of wavelengths,” he says.

The project has three aims: figuring out the best way to place sutures using multi-spectral imaging, accurately tracking soft tissue as they model suturing and comparing the handicraft of a robot against anastomosis hand-sewn by surgeons.

“I like challenges, and I like new things. I am definitely not interested in doing permutations of other people’s work,” Dr. Hsieh explains. “I would much rather go on a path that hasn’t been tread. It is more difficult in some ways, but on a day-to-day basis, I know I am making a contribution.”

In another innovative research project, Dr. Hsieh leveraged a protein secreted by a parasitic worm, Schistosoma haematobium, that suppresses inflammation in hosts as a new therapeutic approach for chemotherapy-induced hemorrhagic cystitis, a form of inflammation of the bladder.

Watching his first surgery nearly 30 years ago, he had no idea robots might one day vie to take over some part of that complicated procedure, or that parasite proteins could be harnessed as drugs. However, he has a clear idea which innovations could be on the horizon for urology in the next three decades.

“My hope is 30 years from now, we will have a solid UTI vaccine and more non-antibiotic therapies. UTIs are the second-most common bacterial infection in childhood and, in severe cases, can contribute to kidney failure,” he says.

Globally, parasitic worms pose an ongoing challenge, affecting more than 1 billion worldwide – second only to malaria. People persistently infected by schistosome worms fail to reach their growth potential, struggle academically and lack sufficient energy for exercise or work.


“There is a feeling that the infection prevalence might be decreasing globally, but not as quickly as everyone hopes. In 30 years perhaps with more mass drug administration and additional drugs – including a vaccine – we’ll have it close to eliminated globally. It would become more like polio, casting a slim shadow with small pockets of infection here or there, rather than consigning millions to perpetual poverty.”

Adora Lin

Funding will help uncover immune system differences that trigger food allergies

Adora Lin

“When it comes to food allergies, we really don’t know how they develop. We don’t know how to best differentiate between a child who can safely eat a potential allergen, like peanuts, compared with a child who cannot safely eat peanuts.” says Adora A. Lin, M.D., Ph.D.

Adora A. Lin, M.D., Ph.D., an attending physician in Children’s department of Allergy and Immunology, was awarded $240,000 to improve understanding of how children’s immune systems tolerate or react to certain food allergens – sometimes triggering a cascade of side effects that can be fatal.

The three-year American Academy of Allergy, Asthma & Immunology (AAAAI) Foundation award will underwrite Dr. Lin’s ongoing research into the regulation of the antibody Immunoglobulin E (IgE), which plays a pivotal role in these allergic responses.

“Our immune system maintains a delicate balance, working just enough to ward off potential invaders and pathogens, but not so much that it triggers problems of its own making,” Dr. Lin says. “When it comes to food allergies, we really don’t know how they develop. We don’t know how to best differentiate between a child who can safely eat a potential allergen, like peanuts, compared with a child who cannot safely eat peanuts.”

Food allergies have become a growing problem and affect about 1 in 13 U.S. children, or about two per classroom. Food items such as eggs, milk, peanuts, tree nuts, soy and wheat trigger allergic reactions that can include itching, swelling, hives and difficulty breathing. As children’s immune systems react to exposure to such allergens, their B-cells produce IgE antibodies.

Apart from avoiding these foods and carrying rescue medications, which must be used immediately after accidental exposure, there is no way to treat food allergies effectively. That makes it essential to better understand how the immune system works in order to innovate new and better food allergy treatments and diagnostics.

Dr. Lin’s work involves isolating immune cells from blood samples, culturing them and stimulating an immune response to known food allergy triggers. B-cells make IgE, but additional clarity is needed about what turns on the “make IgE” signal as well as which signals indicate it’s time to stop making IgE. Ultimately, the aim is to identify biomarkers that are akin to the “check engine” light that illuminates to warn of a potential problem long before a car stalls in traffic.

“I’m very excited about this funding,” Dr. Lin adds. “Our field has done an exceptional job with clinical work to help children with food allergies. This award recognizes the importance of the mechanistic side of the equation. I’m excited to help make that contribution to the research.”

As it stands now, blood tests are sensitive to food-related IgE, but are not specific. Only 30 to 55 percent of children who have IgE to common food allergens have an allergic reaction after eating the food, which means that 45 to 70 percent are merely sensitized and could tolerate eating the food. Current tests cannot distinguish between sensitized and allergic children.

“Our hope is to identify biomarkers that would serve as the ‘check engine’ light that tell us in advance which child’s immune system will react strongly to that food. Right now, there is no way to tell. This project will help uncover those differences,” she says.

Dr. Lin was one of three recipients of the AAAAI Foundation’s faculty development award, which was presented during a March 3, 2018, award ceremony held during the organization’s business meeting.

Catherine Bollard and Hemant Sharma

Nationally recognized immunotherapy and pathology experts take on new leading roles at Children’s National

Catherine Bollard and Hemant Sharma

Catherine Bollard, M.D., M.B.Ch.B., has been chosen to serve as director of the Children’s Research Institute’s Center for Cancer and Immunology Research and Hemant Sharma, M.D., M.H.S., will assume the role of chief of the Division of Allergy and Immunology.

Children’s National Health System recently made several exciting leadership announcements in the allergy, immunology and laboratory medicine fields, furthering the hospital’s ongoing commitment to providing the most comprehensive, innovative care for children.

Award-winning hematologist and immunotherapist Catherine Bollard, M.D., M.B.Ch.B., currently chief of the Division of Allergy and Immunology, has been chosen to serve as director of the Children’s Research Institute’s (CRI) Center for Cancer and Immunology Research (CCIR). CCIR includes more than 50 clinicians and scientists performing groundbreaking clinical and translational research in understanding the origins of, and developing and testing novel therapies for childhood cancers and immunologic disorders. The center receives more than $10 million annually from the National Institutes of Health and other external entities. In her new role on the leadership team of CCIR, Dr. Bollard will lead the advancement and oversight of cancer and immunology research performed at Children’s National.

“All of the progress made in cellular immunotherapy here at Children’s National can be attributed to Catherine and her leadership,” says Mark L. Batshaw, M.D., chief academic officer and director of CRI. “We are confident her impact will extend even further in her new role.”

Meghan Delaney

Nationally recognized laboratory medicine expert Meghan Delaney, D.O., M.P.H., has joined Children’s National as chief of pathology and lab medicine.

Hemant Sharma, M.D., M.H.S., will assume the role of chief of the Division of Allergy and Immunology. In 2008, he joined the faculty at Children’s National and started the Food Allergy Program, which he directs today. His areas of interest include health disparities and community-based management of food allergy. He is also site principal investigator of novel clinical trials of immunotherapy for peanut allergy. He serves on the Medical Advisory Board of Food Allergy Research and Education (FARE), and was the recipient of the 2016 FARE Vision Award for his contributions to the national food allergy community. Dr. Sharma also serves as the site director of the allergy immunology fellowship program with the National Institutes of Health and has won various teaching awards.

In addition, nationally recognized laboratory medicine expert Meghan Delaney, D.O., M.P.H., has joined Children’s National as chief of pathology and lab medicine. An expert in the field of transfusion medicine, Dr. Delaney will lead efforts to unify Anatomic Pathology and Laboratory Medicine into a single division, while advancing cutting-edge practices in the lab to ensure the highest standard of quality and safety for patients. Dr. Delaney joins Children’s National from Seattle, where she held many leadership positions including serving as medical director at the Pediatric Apheresis Program at Seattle Children’s Hospital & Seattle Cancer Care Alliance, the blood bank at Seattle Children’s Hospital and the Immunohematology & Red Blood Cell Genomics Reference Laboratory at Bloodworks Northwest.

“Dr. Delaney brings extensive experience in laboratory medicine innovation and program-building, and we are confident she will make a lasting impact on our patients,” said Jeffrey Dome, M.D., Ph.D., vice president for the Center for Cancer and Blood Disorders at Children’s National. “Her leadership will bolster our commitment to providing top quality care for our patients through advancement of lab medicine research and treatments.”