Posts

Zhe Han

$2M NIH grant for treating disease linked to APOL1

Zhe Han

Children’s researcher Zhe Han, Ph.D., has received a $2 million award from the National Institutes of Health (NIH) to study new approaches to treat kidney disease linked to inheriting Apolipoprotein L1 (APOL1) risk alleles. These risk alleles are particularly common among persons of recent African descent, and African Americans are disproportionately affected by the increased risk in kidney disease associated with these risk alleles.

Han, an associate professor in Children’s Center for Genetic Medicine Research, has established a leading research program that uses the fruit fly Drosophila as a model system to study how genetic mutations lead to disease.

Drosophila is a very basic model, but studies in the fly have led to major breakthroughs in understanding fundamental biological processes that underlie health and disease in humans,” Han says. “Since coming to Children’s National five years ago, I have focused a significant part of my research studying particular fly cells called nephrocytes that carry out many of the important roles of human kidney glomeruli, units within the kidney where blood is cleaned. Working together with clinician colleagues here, we have demonstrated that these Drosophila cells can be used to very efficiently study different types of renal disease caused by genetic mutations.”

The APOL1 risk alleles are genetic variants, termed G1 and G2, found almost exclusively in people of African ancestry and can lead to a four-fold higher risk of end-stage kidney disease, the last of five stages of chronic kidney disease. Exactly how inheriting these risk alleles increases the risk of kidney disease remains an unanswered question and the focus of considerable research activity. Han’s laboratory has developed a Drosophila model of APOL1-linked renal disease by producing the G1 and G2 forms of APOL1 specifically in nephrocytes. This led to defects in fly renal cells that strikingly overlap with disease-associated changes in experimental model and human kidney cells expressing APOL1 risk alleles.

The new NIH award will fund large-scale screening and functional testing to identify new treatment targets and new drugs to treat kidney disease linked to APOL1. Using a genetic screening approach, Han’s lab will identify nephrocyte “modifier” genes that interact with APOL1 proteins and counter the toxic effects of risk-associated G1 and G2 variants.

The team also will identify nephrocyte genes that are turned on or off in the presence of APOL1 risk alleles, and confirm that such “downstream” APOL1-regulated genes are similarly affected in experimental model and human kidney cells. The potential of the newly identified “modifier” and “downstream” genes to serve as targets of novel therapeutic interventions will be experimentally tested in fly nephrocytes in vivo and in cultured mammalian kidney cells.

Finally, the Drosophila model will be used as a drug screening platform for in vivo evaluation of positive “hits” from a cell-based APOL1 drug screening study in order to identify compounds that are most effective with the fewest side effects.

“These types of studies can be most efficiently performed in Drosophila,” Han adds.  “They take advantage of the speed and low cost of the fly model system and the amazing array of well-established, sophisticated genetic tools available for the fly. Using this model to elucidate human disease mechanisms and to identify new effective therapies has truly become my research passion.”

DNA strands on teal background

NUP160 genetic mutation linked to steroid-resistant nephrotic syndrome

DNA strands on teal background

Mutations in the NUP160 gene, which encodes one protein component of the nuclear pore complex nucleoporin 160 kD, are implicated in steroid-resistant nephrotic syndrome, an international team reports March 25, 2019, in the Journal of the American Society of Nephrology. Mutations in this gene have not been associated with steroid-resistant nephrotic syndrome previously.

“Our findings indicate that NUP160 should be included in the gene panel used to diagnose steroid-resistant nephrotic syndrome to identify additional patients with homozygous or compound-heterozygous NUP160 mutations,” says Zhe Han, Ph.D., an associate professor in the Center for Genetic Medicine Research at Children’s National and the study’s senior author.

The kidneys filter blood and ferry waste out of the body via urine. Nephrotic syndrome is a kidney disease caused by disruption of the glomerular filtration barrier, permitting a significant amount of protein to leak into the urine. While some types of nephrotic syndrome can be treated with steroids, the form of the disease that is triggered by genetic mutations does not respond to steroids.

The patient covered in the JASN article had experienced persistently high levels of protein in the urine (proteinuria) from the time she was 7. By age 10, she was admitted to a Shanghai hospital and underwent her first renal biopsy, which showed some kidney damage. Three years later, she had a second renal biopsy showing more pronounced kidney disease. Treatment with the steroid prednisone; cyclophosphamide, a chemotherapy drug; and tripterygium wilfordii glycoside, a traditional therapy, all failed. By age 15, the girl’s condition had worsened and she had end stage renal disease, the last of five stages of chronic kidney disease.

An older brother and older sister had steroid-resistant nephrotic syndrome as well and both died from end stage kidney disease before reaching 17. When she was 16, the girl was able to receive a kidney transplant that saved her life.

Han learned about the family while presenting research findings in China. An attendee of his session said that he suspected an unknown mutation might be responsible for steroid-resistant nephrotic syndrome in this family, and he invited Han to work in collaboration to solve the genetic mystery.

By conducting whole exome sequencing of surviving family members, the research team found that the mother and father each carry one mutated copy of NUP160 and one good copy. Their children inherited one mutated copy from either parent, the variant E803K from the father and the variant R1173X, which causes truncated proteins, from the mother. The woman (now 29) did not have any mutations in genes known to be associated with steroid-resistant nephrotic syndrome.

Some 50 different genes that serve vital roles – including encoding components of the slit diaphragm, actin cytoskeleton proteins and nucleoporins, building blocks of the nuclear pore complex – can trigger steroid-resistant nephrotic syndrome when mutated.

With dozens of possible suspects, they narrowed the list to six variant genes by analyzing minor allele frequency, mutation type, clinical characteristics and other factors.

The NUP160 gene is highly conserved from flies to humans. To prove that NUP160 was the true culprit, Dr. Han’s group silenced the Nup160 gene in nephrocytes, the filtration kidney cells in flies. Nephrocytes share molecular, cellular, structural and functional similarities with human podocytes. Without Nup160, nephrocytes had reduced nuclear volume, nuclear pore complex components were dispersed and nuclear lamin localization was irregular. Adult flies with silenced Nup160 lacked nephrocytes entirely and lived dramatically shorter lifespans.

Significantly, the dramatic structural and functional defects caused by silencing of fly Nup160 gene in nephrocytes could be completely rescued by expressing the wild-type human NUP160 gene, but not by expressing the human NUP160 gene carrying the E803K or R1173X mutation identified from the girl’s  family.

“This study identified new genetic mutations that could lead to steroid-resistant nephrotic syndrome,” Han notes. “In addition, it demonstrates a highly efficient Drosophila-based disease variant functional study system. We call it the ‘Gene Replacement’ system since it replaces a fly gene with a human gene. By comparing the function of the wild-type human gene versus mutant alleles from patients, we could determine exactly how a specific mutation affects the function of a human gene in the context of relevant tissues or cell types. Because of the low cost and high efficiency of the Drosophila system, we can quickly provide much-needed functional data for novel disease-causing genetic variants using this approach.”

In addition to Han, Children’s co-authors include Co-Lead Author Feng Zhao, Co-Lead Author Jun-yi Zhu, Adam Richman, Yulong Fu and Wen Huang, all of the Center for Genetic Medicine Research; Nan Chen and Xiaoxia Pan, Shanghai Jiaotong University School of Medicine; and Cuili Yi, Xiaohua Ding, Si Wang, Ping Wang, Xiaojing Nie, Jun Huang, Yonghui Yang and Zihua Yu, all of Fuzhou Dongfang Hospital.

Financial support for research described in this post was provided by the Nature Science Foundation of Fujian Province of China, under grant 2015J01407; National Nature Science Foundation of China, under grant 81270766; Key Project of Social Development of Fujian Province of China, under grant 2013Y0072; and the National Institutes of Health, under grants DK098410 and HL134940.

Zhe Han lab 2018

$2 million NIH grant to study nephrotic syndrome

Zhe Han lab 2018

A Children’s researcher has received a $2 million grant from the National Institutes of Health (NIH) to study nephrotic syndrome in Drosophila, a basic model system that has revealed groundbreaking insights into human health. The award for Zhe Han, Ph.D., an associate professor in Children’s Center for Genetic Medicine Research, is believed to be the first ever NIH Research Project grant (R01)  to investigate glomerular kidney disease using Drosophila. Nephrotic syndrome is mostly caused by damage of glomeruli, so it is equivalent to glomerular kidney disease.

“Children’s National leads the world in using Drosophila to model human kidney diseases,” Han says.

In order to qualify for the five-year funding renewal, Han’s lab needed to successfully accomplish the aims of its first five years of NIH funding.  During the first phase of funding, Han established that nephrocytes in Drosophila serve the same functions as glomeruli in humans, and his lab created a series of fly models that are relevant for human glomerular disease.

“Some 85 percent of the genes known to be involved in nephrotic syndrome are conserved from the fly to humans. They play similar roles in the nephrocyte as they play in the podocytes in human kidneys,” he adds.

Pediatric nephrotic syndrome is a constellation of symptoms that indicate when children’s kidneys are damaged, especially the glomeruli, units within the kidney that filter blood. Babies as young as 1 year old can suffer proteinuria, which is characterized by too much protein being released from the blood into the urine.

“It’s a serious disease and can be triggered by environmental factors, taking certain prescription medicines or inflammation, among other factors.  Right now, that type of nephrotic syndrome is mainly treated by steroids, and the steroid treatment works in many cases,” he says.

However, steroid-resistant nephrotic syndrome occurs primarily due to genetic mutations that affect the kidney’s filtration system: These filters are either broken or the protein reabsorption mechanism is disrupted.

“When genetics is to blame, we cannot turn to steroids. Right now there is no treatment. And many of these children are too young to be considered for a kidney transplant,” he adds. “We have to understand exactly which genetic mutation caused the disease in order to develop a targeted treatment.”

With the new funding, Han will examine a large array of genetic mutations that cause nephrotic syndrome. He’s focusing his efforts on genes involved in the cytoskeleton, a network of filaments and tubules in the cytoplasm of living cells that help them to maintain shape and carry out important functions.

“Right now, we don’t really understand the cytoskeleton of podocytes – highly specialized cells that wrap around the capillaries of the glomerulus – because podocytes are difficult to access. To change a gene requires time and considerable effort in other experimental models. However, changing genes in Drosophila is very easy, quick and inexpensive. We can examine hundreds of genes involving the cytoskeleton and see how changing those genes affect kidney cell function,” he says.

Han’s lab already found that Coenzyme Q10, one of the best-selling nutrient supplements to support heart health also could be beneficial for kidney health. For the cytoskeleton, he has a different targeted medicine in mind to determine whether Rho inhibitors also could be beneficial for kidney health for patients with certain genetic mutations affecting their podocyte cytoskeleton.

“One particular aim of our research is to use the same strategy as we employed for the Coq2 gene to generate a personalized fly model for patients with cytoskeleton gene mutations and test potential target drugs, such as Rho inhibitors.” Han added. “As far as I understand, this is where the future of medicine is headed.”

Zhe Han

$3 million NIH grant to study APOL1 and HIV synergy

Zhe Han

Zhe Han, Ph.D., (pictured) and Patricio E. Ray, M.D., have received a $3 million, five-year grant from the National Institutes of Health to study the mechanisms behind APOL1 and HIV nephropathies in children, using a combination of Drosophila models, cultured human podocytes and a preclinical model.

Two Children’s researchers have received a $3 million, five-year grant from the National Institutes of Health (NIH) to study the mechanisms of APOL1 and HIV nephropathies in children, using a combination of Drosophila models, cultured human podocytes and a preclinical model.

The APOL1 genetic variants G1 and G2, found almost exclusively in people of African ancestry, lead to a four-fold higher risk of end-stage kidney disease. HIV infection alone also increases the risk of kidney disease but not significantly. However, HIV-positive people who also carry the APOL1 risk alleles G1 or G2 are about 30 times more likely to develop HIV-nephropathy (HIVAN) and chronic kidney disease.

For more than 25 years, Children’s pediatric nephrology program has studied HIV/renal diseases and recently developed Drosophila APOL1-G0 and G1 transgenic lines. That pioneering research suggests that HIV-1 acts as a “second hit,” precipitating HIV-renal disease in children by infecting podocytes through a mechanism that increases expression of the APOL1-RA beyond toxic thresholds.

With this new infusion of NIH funding, labs led by Zhe Han, Ph.D., and Patricio E. Ray, M.D., will determine the phenotype of Drosophila Tg lines that express APOL1-G0/G1/G2 and four HIV genes in nephrocytes to assess how they affect structure and function. The teams also will determine whether APOL1-RA precipitates the death of nephrocytes expressing HIV genes by affecting autophagic flux.

“Our work will close a critical gap in understanding about how HIV-1 interacts with the APOL1 risk variants in renal cells to trigger chronic kidney disease, and we will develop the first APOL1/HIV transgenic fly model to explore these genetic interactions in order to screen new drugs to treat these renal diseases,” says Dr. Ray, a Children’s nephrologist.

While a large number of people from Africa have two copies of APOL1 risk alleles, they do not necessarily develop kidney disease. However, if a patient has two copies of APOL1 risk alleles and is HIV-positive, they almost certainly will develop kidney disease.

Patricio Ray

“Our work will close a critical gap in understanding about how HIV-1 interacts with the APOL1 risk variants in renal cells to trigger chronic kidney disease, and we will develop the first APOL1/HIV transgenic fly model to explore these genetic interactions in order to screen new drugs to treat these renal diseases,” says Dr. Ray, a Children’s nephrologist.

“Many teams want to solve the puzzle of how APOL1 and HIV synergize to cause kidney failure,” says Han, associate professor in Children’s Center for Genetic Medicine Research. “We are in the unique position of combining a powerful new kidney disease model system, Drosophila, with long-standing human podocyte and HIVAN studies.”

The team hypothesizes that even as an active HIV infection is held in check by powerful new medicines, preventing the virus from proliferating or infecting new cells, HIV can act as a Trojan horse by making the human cells it infects express HIV protein.

To investigate this hypothesis, the team will create a series of fly models, each expressing a major HIV protein, and will test the genetic interaction between these HIV genes with APOL1. Similar studies also will be performed using cultured human podocytes. Identified synergy will be studied further using biochemical and transcription profile analyses.

Drosophila is a basic model system, but it has been used to make fundamental discoveries, including genetic control of how the body axes is determined and how the biological clock works – two studies that led to Nobel prizes,” Han adds. “I want to use the fly model to do something close to human disease. That is where my research passion lies.”

Zhe Han

Research led by Zhe Han featured on cover of JASN, leading kidney disease journal

Journal of the American Society of Nephrology September 2017 cover

Coenzyme Q10, one of the best-selling nutrient supplements to support heart health also could be beneficial for kidney health, according to research conducted in transgenic fruit flies that was led by Zhe Han, Ph.D., associate professor at Children’s Center for Cancer and Immunology Research.

Nephrocytes, filtration kidney cells in Drosophila, require the Coq2 gene for protein reabsorption, toxin sequestration and critical cell ultrastructure.  Silencing the Coq2 gene results in aberrantly localized nephrocyte slit diaphragms and deformed lacunar channels, Han and co-authors found. Nephrocytes closely resemble the podocytes of the human kidney.

The research team’s paper, published online April 2017, this fall was featured on the cover of Journal of the American Society of Nephrology, the No. 1 kidney disease journal.

“I am honored that the JASN editors chose to feature my lab’s work on the cover of this prestigious journal,” Han says. “This underscores the utility of our gene-replacement approach, which silenced the fly homolog in the tissue of interest – here, the kidney cells – and provided a human gene to supply the silenced function.”

Zhe Han, PhD

Lab led by Zhe Han, Ph.D., receives $1.75 million from NIH

Zhe Han, PhD

A new four-year NIH grant will enable Zhe Han, Ph.D., to carry out the latest stage in the detective work to determine how histone-modifying genes regulate heart development and the molecular mechanisms of congenital heart disease caused by these genetic mutations.

The National Institutes of Health (NIH) has awarded $1.75 million to a research lab led by Zhe Han, Ph.D., principal investigator and associate professor in the Center for Genetic Medicine Research, in order to build models of congenital heart disease (CHD) that are tailored to the unique genetic sequences of individual patients.

Han was the first researcher to create a Drosophila melanogaster model to efficiently study genes involved in CHD, the No.1 birth defect experienced by newborns, based on sequencing data from patients with the heart condition. While surgery can fix more than 90 percent of such heart defects, an ongoing challenge is how to contend with the remaining cases since mutations of a vast array of genes could trigger any individual CHD case.

In a landmark paper published in 2013 in the journal Nature, five different institutions sequenced the genomes of more than 300 patients with CHD and their families, identifying 200 mutated genes of interest.

“Even though mutations of these genes were identified from patients with CHD, these genes cannot be called ‘CHD genes’ since we had no in vivo evidence to demonstrate these genes are involved in heart development,” Han says. “A key question to be answered: How do we efficiently test a large number of candidate disease genes in an experimental model system?”

In early 2017, Han published a paper in Elife providing the answer to that lingering question. By silencing genes in a fly model of human CHD, the research team confirmed which genes play important roles in development. The largest group of genes that were validated in Han’s study were histone-modifying genes. (DNA winds around the histone protein, like thread wrapped around a spool, to become packed into a higher-level structure.)

The new four-year NIH grant will enable Han to carry out the next stage of the detective work to determine precisely how histone-modifying genes regulate heart development. In order to do so, his group will silence the function of histone-modifying genes one by one, to study their function in the fly heart development and to identify the key histone-modifying genes for heart development. And because patients with CHD can have more than one mutated gene, he will silence multiple genes simultaneously to determine how those genes work in partnership to cause heart development to go awry.

By the end of the four-year research project, Han hopes to be able to identify all of the histone-modified genes that play pivotal roles in development of the heart in order to use those genes to tailor make personalized fly models corresponding to individual patient’s genetic makeup.

Parents with mutations linked to CHD are likely to pass heart disease risk to the next generation. One day, those parents could have an opportunity to sequence their genes to learn the degree of CHD risk their offspring face.

“Funding this type of basic research enables us to understand which genes are important for heart development and how. With this knowledge, in the near future we could predict the chances of a baby being born with CHD, and cure it by using gene-editing approaches to prevent passing disease to the next generation,” Han says.

Coenzyme Q10

Supplement might help kidney disease

Coenzyme Q10

A research team was able to “rescue” phenotypes caused by silencing the fly CoQ2 gene by providing nephrocytes with a normal human CoQ2 gene, as well as by providing flies with Q10, a popular supplement.

A new study led by Children’s National research scientists shows that coenzyme Q10 (CoQ10), a popular over-the-counter supplement sold for pennies a dose, could alleviate genetic problems that affect kidney function. The work, done in genetically modified fruit flies — a common model for human genetic diseases since people and fruit flies share a majority of genes — could give hope to human patients with problems in the same genetic pathway.

The new study, published April 20 by Journal of the American Society of Nephrology, focuses on genes the fly uses to create CoQ10.

“Transgenic Drosophila that carry mutations in this critical pathway are a clinically relevant model to shed light on the genetic mutations that underlie severe kidney disease in humans, and they could be instrumental for testing novel therapies for rare diseases, such as focal segmental glomerulosclerosis (FSGS), that currently lack treatment options,” says Zhe Han, Ph.D., principal investigator and associate professor in the Center for Cancer & Immunology Research at Children’s National and senior study author.

Nephrotic syndrome (NS) is a cluster of symptoms that signal kidney damage, including excess protein in the urine, low protein levels in blood, swelling and elevated cholesterol. The version of NS that is resistant to steroids is a major cause of end stage renal disease. Of the more than 40 genes that cause genetic kidney disease, the research team concentrated on mutations in genes involved in the biosynthesis of CoQ10, an important antioxidant that protects the cell against damage from reactive oxygen.

Drosophila pericardial nephrocytes perform renal cell functions including filtering of hemolymph (the fly’s version of blood), recycling of low molecular weight proteins and sequestration of filtered toxins. Nephrocytes closely resemble, in structure and function, the podocytes of the human kidney.  The research team tailor-made a Drosophila model to perform the first systematic in vivo study to assess the roles of CoQ10 pathway genes in renal cell health and kidney function.

One by one, they silenced the function of all CoQ genes in nephrocytes. If any individual gene’s function was silenced, fruit flies died prematurely. But silencing three specific genes in the pathway associated with NS in humans – Coq2, Coq6 and Coq8 – resulted in abnormal localization of slit diaphragm structures, the most important of the kidney’s three filtration layers; collapse of membrane channel networks surrounding the cell; and increased numbers of abnormal mitochondria with deformed inner membrane structure.

Journal of the American Society of Nephrology September 2017 cover

The flies also experienced a nearly three-fold increase in levels of reactive oxygen, which the study authors say is a sufficient degree of oxidative stress to cause cellular injury and to impair function – especially to the mitochondrial inner membrane. Cells rely on properly functioning mitochondria, the cell’s powerhouse, to convert energy from food into a useful form. Impaired mitochondrial structure is linked to pathogenic kidney disease.

The research team was able to “rescue” phenotypes caused by silencing the fly CoQ2 gene by providing nephrocytes with a normal human CoQ2 gene, as well as by providing flies with Q10, a readily available dietary supplement. Conversely, a mutant human CoQ2 gene from an patient with FSGS failed to rescue, providing evidence in support of that particular CoQ2 gene mutation causing the FSGS. The finding also indicated that the patient could benefit from Q10 supplementation.

“This represents a benchmark for precision medicine,” Han adds. “Our gene-replacement approach silenced the fly homolog in the tissue of interest – here, the kidney cells – and provided a human gene to supply the silenced function. When we use a human gene carrying a mutation from a patient for this assay, we can discover precisely how a specific mutation – in many cases only a single amino acid change – might lead to severe disease. We can then use this personalized fly model, carrying a patient-derived mutation, to perform drug testing and screening to find and test potential treatments. This is how I envision using the fruit fly to facilitate precision medicine.”

Related resources:
News release: Drosophila effectively models human genes responsible for genetic kidney diseases
Video: Using the Drosophila model to learn more about disease in humans

fruit fly

Studying fruit flies to better understand human kidneys

fruit fly

In his latest study, Zhe Han and co-authors zeroed in on Rab genes to determine their role in fruit fly renal function.

It’s a given that fruit flies and humans are different. Beyond the obvious are a litany of less-apparent distinctions. For example, fruit flies have hemolymph instead of blood. Arranged around a single cardiac chamber, compared with humans’ four-chamber hearts, are a group of cells called nephrocytes that serve the same function as human kidneys, filtering toxins and waste from hemolymph.

But despite the dissimilarities between these two organisms, fly nephrocytes and human kidney cells are similar enough to allow the fruit fly, a common lab model that shares about 60 percent of its DNA with people, to provide insights on kidney disease in people. In a new study in fruit flies led by Zhe Han, Ph.D., principal investigator and associate professor in the Center for Cancer and Immunology Research at Children’s National Health System, researchers identified several new genes thought to be critical for renal function in humans. The findings could lend insight to the inner workings of this organ down to the molecular level and eventually help further the understanding or treatment of kidney disorders.

Han explains that recent research by his group tied 80 fruit fly genes to renal function. Many of these newly identified genes were Rab GTPases, a family of genes that make proteins whose job is to move substances around in cells through membrane-enclosed pouches called vesicles. For example, Rab proteins might put some substances on the path to destruction by moving them into lysosomes, vesicles with enzymes that break down all kinds of biomolecules. Rab proteins might help other substances be reused by steering them into recycling endosomes, vesicles that shuttle biomolecules that are still useful to where they will be used next.

In their latest study, published online Feb. 8, 2017 in Cell & Tissue Research, Han and co-authors zeroed in on these Rab genes to determine their role in fruit fly renal function. The researchers accomplished this by using genetic alterations to shut down each gene selectively in fruit fly nephrocytes. They then evaluated these transgenic flies on a number of different characteristics, including ability to effectively filter proteins from the blood, whether toxins placed in their food accumulated in their nephrocytes, how they developed and how they survived.

Their findings readily identified five Rab genes that seemed more important for these functions than the others: Rabs 1, 5, 7, 11 and 35, which all have analogous genes in humans.

Peering into the nephrocytes of flies in which these three Rabs had been silenced, the researchers made critical discoveries. Turning off Rab 7 appeared to block the path toward biomolecules in the cell entering lysosomes. Rather than biomolecules being destroyed, they instead were shuttled to the recycling route. Turning off Rab 11 had the reverse effect; recycling endosomes were drastically reduced, while lysosomes dramatically increased. Turning off Rab 5 had the most striking effect: All vesicles going in or out were blocked – like a cellular traffic jam – filling the cell with biomolecules that had no place to go, Han says.

Han, who has long tracked renal-related mutations in humans, says that no patients with kidney disease have turned up so far with Rab mutations. These genes are critical for functions throughout the body, he explains, so any embryos with these mutations are unlikely to survive. However, he adds, a host of other renal-related genes work in parallel or are controlled by different Rabs. So understanding the role of Rabs in renal function provides some insight into how these genes operate as well as what might happen when the function of these genes goes awry.

Han plans to study how Rabs 5, 7 and 11 fit into networks of renal genes as well as the role of the other Rabs that could play novel roles in the nephrocyte cell trafficking.

“These findings in fly Rabs provide the framework to study the major causes of kidney disease in human patients,” he adds.

Zhe Han

Fruit flies can model human genetic kidney disease

Zhe Han

Zhe Han, Ph.D., has found that a majority of human genes known to be associated with nephrotic syndrome play conserved roles in renal function, from fruit flies to humans.

Drosophila melanogaster, the common fruit fly, has played a key role in genetic research for decades. Even though D. melanogaster and humans look vastly different, researchers estimate that about 75 percent of human disease-causing genes have a functional homolog in the fly.

A Children’s National Health System research team reported in a recent issue of Human Molecular Genetics that the majority of genes associated with nephrotic syndrome (NS) in humans also play pivotal roles in Drosophila renal function, a conservation of function across species that validates transgenic flies as ideal pre-clinical models to improve understanding of human disease.

NS is a cluster of symptoms that signal kidney damage, including excess protein in urine, low protein levels in blood, elevated cholesterol and swelling. Research teams have identified mutations in more than 40 genes that cause genetic kidney disease, but knowledge gaps remain in understanding the precise roles that specific genes play in kidney cell biology and renal disease. To address those research gaps, Zhe Han, Ph.D., a principal investigator and associate professor in the Center for Cancer & Immunology Research at Children’s National, and colleagues systematically studied NS-associated genes in the Drosophila model, including seven genes whose renal function had never been analyzed in a pre-clinical model.

“Eighty-five percent of these genes are required for nephrocyte function, suggesting that a majority of human genes known to be associated with NS play conserved roles in renal function from flies to humans,” says Han, the paper’s senior author. “To hone in on functional conservation, we focused on Cindr, the fly’s version of the human NS gene, CD2AP,” Han adds. “Silencing Cindr in nephrocytes led to dramatic impairments in nephrocyte function, shortened their life span, collapsed nephrocyte lacunar channels – the fly’s nutrient circulatory system – and effaced nephrocyte slit diaphragms, which diminished filtration function.”

And, to confirm that the phenotypes they were studying truly caused human disease, they reversed the damage by expressing a wild-type human CD2AP gene. A mutant allele derived from a patient with CD2AP-associated NS did not rescue the phenotypes.

Thus, the Drosophila nephrocyte can be used to explain the clinically relevant molecular mechanisms underlying the pathogenesis of most monogenic forms of NS, the research team concludes. “This is a landmark paper for using the fly to study genetic kidney diseases,” Han adds. “For the first time, we realized that the functions of essential kidney genes could be so similar from the flies to humans.”

A logical next step will be to generate personalized in vivo models of genetic renal diseases bearing patient-specific mutations, Han says. These in vivo models can be used for drug screens to identify treatments for kidney diseases that currently lack therapeutic options, such as most of the 40 genes studies in this paper as well as the APOL1 gene that is associated with the higher risk of kidney diseases among millions of African Americans.

Zhe Han, PhD

Key to genetic influence of APOL1 on chronic kidney disease

Zhe Han

Drosophila melanogaster nephrocytes share structural and functional similarities with human renal cells, making the fruit fly an ideal pre-clinical model for studying how the APOL1 gene contributes to renal disease in humans.

Using the Drosophila melanogaster pre-clinical model, a Children’s National Health System research team identified a key mechanism by which the APOL1 gene contributes to chronic kidney disease in people of African descent. The model exploits the structural and functional similarities between the fruit fly’s nephrocytes and renal cells in humans to give scientists an unprecedented ability to study gene-to-cell interactions, identify other proteins that interact with APOL1 in renal disease, and target novel therapies, according to a paper published November 18 in the Journal of the American Society of Nephrology.

“This is one of the hottest research topics in the kidney field. We are the first group to generate this result in fruit flies,” says Zhe Han, Ph.D., a senior Drosophila specialist and associate professor in the Center for Cancer & Immunology Research at Children’s National. Han, senior author of the paper, presented the study results this month during Kidney Week 2016, the American Society of Nephrology’s annual gathering in Chicago that was expected to draw more than 13,000 kidney professionals from around the world.

The advantages of Drosophila for biomedical research include its rapid generation time and an unparalleled wealth of sophisticated genetic tools to probe deeply into fundamental biological processes underlying human diseases. People of African descent frequently inherit a mutant version of the APOL1 gene that affords protection from African sleeping sickness, but is associated with a 17- to 30-fold greater chance of developing certain types of kidney disease. That risk is even higher for individuals infected with the human immunodeficiency virus (HIV). Drosophila renal cells, called nephrocytes, accurately mimic pathological features of human kidney cells during APOL1-associated renal disease.

“Nephrocytes share striking structural and functional similarities with mammalian podocytes and renal proximal tubule cells, and therefore provide us a simple model system for kidney diseases,” says Han, who has studied the fruit fly for 20 years and established the fly nephrocyte as a glomerular kidney disease model in 2013 with two research papers in the Journal of the American Society of Nephrology.

In this most recent study, Han’s team cloned a mutated APOL1 gene from podocyte cells cultured from a patient with HIV-associated nephropathy. They created transgenic flies making human APOL1 in nephrocytes and observed that initially the transgene caused increased cellular functional activity. As flies aged, however, APOL1 led to reduced cellular function, increased cell size, abnormal vesicle acidification, and accelerated cell death.

“The main functions of nephrocytes are to filter proteins and remove toxins from the fly’s blood, to reabsorb protein components, and to sequester harmful toxins. It was surprising to see that these cells first became more active and temporarily functioned at higher levels,” says Han. “The cells got bigger and stronger but, ultimately, could not sustain that enhancement. After swelling to almost twice their normal size, the cells died. Hypertrophy is the way that the human heart responds to stress overload. We think kidney cells may use the same coping mechanism.”

The Children’s research team is a multidisciplinary group with members from the Center for Cancer & Immunology Research, the Center for Genetic Medicine Research, and the Division of Nephrology. The team also characterized fly phenotypes associated with APOL1 expression that will facilitate the design and execution of powerful Drosophila genetic screening approaches to identify proteins that interact with APOL1 and contribute to disease mechanisms. Such proteins represent potential therapeutic targets. Currently, transplantation is the only option for patients with kidney disease linked to APOL1.

“This is only the beginning,” Han says. “Now, we have an ideal pre-clinical model. We plan to start testing off-the-shelf therapeutic compounds, for example different kinase inhibitors, to determine whether they block any of the steps leading to renal cell disease.”