Tag Archive for: Dorothy Bulas

Members of the Columbia Zika virus research team

School entry neurodevelopmental outcomes of Zika-exposed Colombian children

Members of the Columbia Zika virus research team

The Children’s National Hospital Zika Research Team and collaborators from Biomelab, in Barranquilla, Colombia take a picture after a study visit in Sabanalarga, Colombia following the neurodevelopmental outcomes of children who had in utero exposure to Zika virus. Pictured from Children’s National Hospital: Dr. Sarah Mulkey, Regan Andringa-Seed, Margarita Arroyave-Wessel, and Dr. Madison Berl.

The long-term neurodevelopmental effects of antenatal Zika virus (ZIKV) exposure in children without congenital Zika syndrome (CZS) remain unclear, as few children have been followed to the age of starting primary school.

In a new study published in Pathogens, researchers found children with in utero ZIKV exposure appear to have an overall positive developmental trajectory at 4 to 5 years of age but may experience risks to neurodevelopment in areas of emotional regulation and adaptive mobility.

The hold up in the field

Children who were born during the ZIKV epidemic and who had in utero exposure to ZIKV are only now at the age to start school. Child neurodevelopmental outcome data has not been reported at the age of school entry for children with antenatal ZIKV exposure who do not have the severe birth defects of CZS.

“As these children approach the early school-age years, we aim to examine whether there are neurodevelopmental differences in executive function, motor ability, language development or scholastic skills as compared to a group of unexposed control participants from the same communities in Colombia,” says Sarah Mulkey, M.D., Ph.D., prenatal-neonatal neurologist in The Zickler Family Prenatal Pediatrics Institute at Children’s National Hospital and lead author of the study.

Moving the field forward

Building on previous findings, this study presents the longitudinal outcomes of a well-characterized Colombian cohort of ZIKV-exposed children without CZS at ages 4 to 5 years. These children have been seen for neurodevelopmental follow-up as infants and toddlers at approximately 6 months, 18 months and 3 years of age as part of an international collaboration between researchers in Barranquilla, Colombia and at Children’s National beginning in 2016. The objective of this study was to assess the multi-domain neurodevelopmental outcomes in 4 to 5-year-old children with antenatal ZIKV exposure without CZS compared to unexposed controls in Colombia.

Why we’re excited

Many of the children who had antenatal ZIKV exposure are making good progress in multiple areas of their neurodevelopment. However, the researchers found that children with antenatal ZIKV exposure have differences in areas of emotional regulation, executive function, mood and behavior which may relate to virus exposure during their early brain development.

“These areas of brain function are important for future academic achievement, employment, mental health and social relationships,” says Dr. Mulkey. “So, it will be important to continue to follow these children at older ages when they start school.”

Children’s National leads the way

Children’s National is a leader in conducting outcome studies of children born following antenatal ZIKV exposure. This study follows children in Colombia who are now 5 years old who were first studied while they were in the womb. These children have contributed unique longitudinal understanding to early child neurodevelopment following in utero exposure to ZIKV.

Dr. Mulkey is committed to studying the long-term neurodevelopmental impacts that viruses like Zika and SARS-CoV-2 have on infants born to mothers who were infected during pregnancy through research with the Congenital Infection Program at Children’s National and in collaboration with colleagues in Colombia.

Additional Children’s National authors include Meagan Williams M.S.P.H., C.C.R.C., senior research coordinator; Regan Andringa-Seed, clinical research coordinator, Margarita Arroyave-Wessel, clinical research coordinator; L. Gilbert Vezina, M.D., director, Neuroradiology Program; Dorothy Bulas, M.D., chief, Diagnostic Imaging and Radiology; Robert Podolsky, biostatistician.

Researchers showing paintings of zika virus

Dr. Sarah Mulkey and Children’s National clinical research coordinators in the Prenatal Pediatrics Institute and the Division of Pediatric Infectious Diseases display their paintings of the Zika virus. Pictured from left to right: Manuela Iglesias, Elizabeth Corn, Dr. Sarah Mulkey, Emily Ansusinha and Meagan Williams.

doctor checking pregnant woman's belly

Novel approach to detect fetal growth restriction

doctor checking pregnant woman's belly

Morphometric and textural analyses of magnetic resonance imaging can point out subtle architectural deviations associated with fetal growth restriction during the second half of pregnancy, a first-time finding that has the promise to lead to earlier intervention.

Morphometric and textural analyses of magnetic resonance imaging (MRI) can point out subtle architectural deviations that are associated with fetal growth restriction (FGR) during the second half of pregnancy. The first-time finding hints at the potential to spot otherwise hidden placental woes earlier and intervene in a more timely fashion, a research team led by Children’s National Hospital faculty reports in Pediatric Research.

“We found reduced placental size, as expected, but also determined that the textural metrics are accelerated in FGR when factoring in gestational age, suggesting premature placental aging in FGR,” says Nickie Andescavage, M.D., a neonatologist at Children’s National and the study’s lead author. “While morphometric and textural features can discriminate placental differences between FGR cases with and without Doppler abnormalities, the pattern of affected features differs between these sub-groups. Of note, placental insufficiency with abnormal Doppler findings have significant differences in the signal-intensity metrics, perhaps related to differences of water content within the placenta.”

The placenta, an organ shared by the pregnant woman and the developing fetus, delivers oxygen and nutrients to the developing fetus and ferries away waste products. Placental insufficiency is characterized by a placenta that develops poorly or is damaged, impairing blood flow, and can result in still birth or death shortly after birth. Surviving infants may be born preterm or suffer early brain injury; later in life, they may experience cardiovascular, metabolic or neuropsychiatric problems.

Because there are no available tools to help clinicians identify small but critical changes in placental architecture during pregnancy, placental insufficiency often is found after some damage is already done. Typically, it is discovered when FGR is diagnosed, when a fetus weighs less than 9 of 10 fetuses of the same gestational age.

“There is a growing appreciation for the prenatal origin of some neuropsychiatric disorders that manifest years to decades later. Those nine months of gestation very much define the breath of who we later become as adults,” says Catherine Limperopoulos, Ph.D., director of MRI Research of the Developing Brain at Children’s National and the study’s senior author. “By identifying better biomarkers of fetal distress at an earlier stage in pregnancy and refining our imaging toolkit to detect them, we set the stage to be able to intervene earlier and improve children’s overall outcomes.”

The research team studied 32 healthy pregnancies and compared them with 34 pregnancies complicated by FGR. These women underwent up to two MRIs between 20 weeks to 40 weeks gestation. They also had abdominal circumference, fetal head circumference and fetal femur length measured as well as fetal weight estimated.

In pregnancies complicated by FGR, placentas were smaller, thinner and shorter than uncomplicated pregnancies and had decreased placental volume. Ten of 13 textural and morphometric features that differed between the two groups were associated with absolute birth weight.

“Interestingly, when FGR is diagnosed in the second trimester, placental volume, elongation and thickness are significantly reduced compared with healthy pregnancies, whereas the late-onset of FGR only affects placental volume,” Limperopoulos adds. “We believe with early-onset FGR there is a more significant reduction in the developing placental units that is detected by gross measures of size and shape. By the third trimester, the overall shape of the placenta seems to have been well defined so that primarily volume is affected in late-onset FGR.”

In addition to Dr. Andescavage and Limperopoulos, study co-authors include Sonia Dahdouh, Sayali Yewale, Dorothy Bulas, M.D., chief of the Division of Diagnostic Imaging and Radiology, and Biostatistician, Marni Jacobs, Ph.D., MPH, all of Children’s National; Sara Iqbal, of MedStar Washington Hospital Center; and Ahmet Baschat, of Johns Hopkins Center for Fetal Therapy.

Financial support for research described in this post was provided by the National Institutes of Health under award number 1U54HD090257, R01-HL116585, UL1TR000075 and KL2TR000076, and the Clinical-Translational Science Institute-Children’s National.