Tag Archive for: cerebral palsy

Doctors performing bilateral high intensity focused ultrasound (HIFU) pallidotomy on a patient with dyskinetic cerebral palsy.

Children’s National performs first ever HIFU procedure on patient with cerebral palsy

Doctors performing bilateral high intensity focused ultrasound (HIFU) pallidotomy on a patient with dyskinetic cerebral palsy.

HIFU is a non-invasive therapy that utilizes focused ultrasound waves to thermally ablate a focal area of tissue.

In January, a team of multidisciplinary doctors performed the first case in the world of using bilateral high intensity focused ultrasound (HIFU) pallidotomy on Jesus, a 22-year-old patient with dyskinetic cerebral palsy.

The procedure is part of a clinical trial led by Chima Oluigbo, M.D., pediatric neurosurgeon at Children’s National Hospital.

“The primary objective of the study is to evaluate the safety of ExAblate Transcranial MRgFUS as a tool for creating bilateral or unilateral lesions in the globus pallidus (GPi) in patients with treatment-refractory secondary dystonia due to dyskinetic cerebral palsy,” Dr. Oluigbo explained. “The secondary purpose is to assess the impact of HIFU pallidotomy on dyskinetic cerebral palsy movement disorder in pediatric and young adult patients.”

In addition, the impact of bilateral pallidotomy on motor development, pain perception, speech, memory, attention and cognition in these patients will be assessed.

“We hope that the trial will help us find results that lead to treatments that can reduce the rigidity and stiffness which occurs in cerebral palsy so we can help these children who do not have any effective treatment,” Dr. Oluigbo added.

“This new, first of its kind, non-invasive therapeutic approach – without even a skin incision – will open the door to offering hope for a number of kids with movement disorders who have failed conventional therapy,” said Robert Keating, M.D., chief of neurosurgery at Children’s National. “We are at the beginning of a new era for treating functional disorders in the pediatric patient.”

How it works

HIFU is a non-invasive therapy that utilizes focused ultrasound waves to thermally ablate a focal area of tissue. In the past, Children’s National successfully used HIFU to treat low-grade type tumors located in difficult locations of the brain, such as hypothalamic hamartomas and pilocytic astrocytoma, as well as for epilepsy and other movement disorders.

This most recent procedure was another successful milestone for the hospital, discharging Jesus the following day without any complications.

The team comprised neurosurgeons, MRI techs, anesthesiologists and radiologists, to name a few.

Originally, Jesus came to Children’s National in 2006 when he started working with the Physical Medicine and Rehabilitation team to help him with his muscle hypertonia management as well as equipment, orthoses and therapy concerns.

“As he continued to grow, his muscle hypertonia became more pronounced and caused difficulty with his care, positioning and comfort,” said Olga Morozova, M.D., pediatric rehabilitation specialist at Children’s National. “We have tried multiple oral medications however he has had significant side effects from the majority of the medications.”

Dr. Morozova and Julie Will, M.S.N., F.N.P., the nurse practitioner that worked with Jesus, referred him to Dr. Oluigbo after they learned about HIFU being an option to treat Jesus using a non-invasive approach.

Moving the field forward

This clinical trial highlights the expanding indications for focused ultrasound.

“We are excited about the potential for these innovative treatment strategies in neurosurgery to transform the lives of pediatric patients who suffer from challenging diseases, such as brain tumors, epilepsy, and movement disorders,” said Hasan Syed, M.D., co-director of the Focused Ultrasound Program at Children’s National. “We are redefining what is possible in neurosurgery.”

From low-intensity focused ultrasound (LIFU) treatments for our young DIPG patients to now the groundbreaking research on HIFU for pediatric movement disorders, the dedication to cutting-edge techniques highlights the team’s commitment to patients and transforming pediatric neurosurgical care.

post-op x-ray of internal brace augmentation surgery

Innovative internal brace augmentation improves long-term foot stability

The use of internal brace (IB) augmentation leads to significantly improved long-term foot stability in flatfoot reconstructive surgery for children with cerebral palsy (CP) and pes planovalgus (flat foot) deformities, according to data presented by researchers at the American Academy for Cerebral Palsy and Developmental Medicine annual meeting.

Moving the field forward

The study looked at 58 patients − 31 without IB augmentation and 27 with IB augmentation. Both cohorts maintained improved radiographic indices at the final 24-month timepoint. However, weightbearing radiographs for the IB augmentation group had less midfoot collapse, maintaining a statistically significant difference in all radiographic parameters two years following the index procedure.

“Internal brace augmentation is an innovative surgical technique that provides additional stability to the medial column soft tissues following lateral collateral ligament (LCL) surgery,” says lead author Sean Tabaie, M.S., M.D., F.A.A.O.S., pediatric orthopaedic surgeon at Children’s National Hospital and  developer of this surgical technique.

The patient benefit

“Pes planovalgus deformities are common in children with CP and with painful progression, surgery is often indicated,” says Dr. Tabaie. “This procedure will help prevent mid-foot collapse and better maintain long-term foot shape when weightbearing.”

This novel surgical technique helps to maintain proper biomechanical orientation of the foot following LCL for correction of a pes planovagus foot deformity in the ambulatory pediatric CP population. Patients who received IB augmentation demonstrated consistently better radiographic parameters, including talar-first metatarsal angles and talonavicular coverage angles compared to those who underwent surgery without IB augmentation.

Children’s National Hospital leads the way

Children’s National demonstrates leadership in this area through its involvement in innovative clinical research including the surgical approach outlined in this study. This work is unique for two reasons:

  • Patient population: The study focuses on a specific and complex patient population—children with CP and pes planovalgus foot deformities. This highlights Children’s National Hospital’s commitment to addressing the individual healthcare needs of pediatric patients with special conditions.
  • Surgical innovation: The use of IB augmentation as a surgical technique is innovative. Children’s National is at the forefront of exploring new approaches to improve outcomes and quality of life for children with CP.

girl hugging boy in wheelchair

Comparison of immobilization techniques following hip reconstruction surgery in children with cerebral palsy

girl hugging boy in wheelchair

Currently, there is no standardized protocol or consensus regarding post-operative immobilization following hip reconstruction in children with cerebral palsy or with other neuromuscular conditions.

A new study, led by Sean Tabaie, M.D., and published in Cureus, evaluated the effects of several methods of postoperative immobilization to determine which technique has the fewest complications.

Why it matters

Currently, there is no standardized protocol or consensus regarding post-operative immobilization following hip reconstruction in children with cerebral palsy or with other neuromuscular conditions.

What we learned

Findings provide evidence that there are no significant clinical ramifications of using less restrictive immobilization types such as abduction pillows in patients undergoing hip reconstruction surgery. There was no significant difference in length of stay, pain control duration or complication rates among the three methods of immobilization tested in the study.

What’s next

Further analysis is warranted to gather sufficient data of patients immobilized with an abduction pillow after skeletal osteotomies in conjunction with an anterior hip open reduction to definitively recommend its use versus a more restrictive option in the setting of an open reduction.

You can read the full study “Evaluating Postoperative Immobilization Following Hip Reconstruction in Children with Cerebral Palsy” in Cureus.

3d illustration of a lumbar spine injection

Epidural analgesia best option for kids after neuromuscular hip reconstruction?

3d illustration of a lumbar spine injection

A study showed that post-operative use of epidural analgesia in patients with neuromuscular conditions provided similar outcomes to traditional pain management regimens.

Sean Tabaie, M.D., pediatric orthopaedic surgeon and medical director of the motion capture lab at Children’s National Hospital, led a retrospective study to determine whether post-operative use of epidural analgesia in patients with neuromuscular conditions, such as cerebral palsy, provided similar outcomes with regard to pain scores, length of stay, duration of foley placement, duration of pain control and complications as compared to traditional pain management regimens.

The study showed that the use of epidural analgesia was associated with comparable pain scores, despite the increased length of stay and duration of Foley placement.

Why it matters

Neuromuscular conditions, such as cerebral palsy, are the most common motor disabilities in the pediatric population. Children with these conditions frequently have accompanying hip deformities that require pelvic and femur osteotomy to correct the spastic hip dislocations.

Studies suggest that children with cerebral palsy already experience twice as many complications and have high reoperation rates following hip surgery compared to their non-cerebral palsy counterparts. Therefore, to optimize outcomes in an already at-risk patient population – likely to undergo multiple procedures to correct musculoskeletal abnormalities – it is crucial to minimize opioid usage given its addictive nature and side effects such as constipation, sedation and tolerance.

Sean Tabaie

Dr. Sean Tabaie

What’s next

“We believe the present study can serve as a foundation for future prospective and multi-center studies, which should aim to investigate dose and timing of epidural analgesia in children with neuromuscular conditions with a particular focus on surgical approach, side effects and time to return to activity,” says Dr. Tabaie.

Given the scarcity of data surrounding the use of epidural anesthesia in children with neuromuscular conditions, future research should seek to further investigate the efficacy of epidural analgesia for post-operative pain management in children with neuromuscular conditions.

You can read the full study “Use of Epidural Analgesia in Children With Neuromuscular Conditions Following Hip Reconstruction” in Cureus.

Authors on the study from Children’s National include Sean Tabaie, M.D.

NCC PDI 2022 pitch competition winners

Five winners selected in prestigious pediatric device competition

The National Capital Consortium for Pediatric Device Innovation (NCC-PDI) announced five awardees chosen in its prestigious “Make Your Medical Device Pitch for Kids!” competition. Each received a share of $150,000 in grant funding from the U.S. Food and Drug Administration (FDA), with awards ranging from $20,000 to $50,000 to support the advancement of pediatric medical devices.

Consistent with its mission of addressing the most pressing pediatric device needs, this year’s competition, moderated by MedTech Innovator, welcomed medical device technologies that address the broad unmet needs of children. The pediatric pitch event was part of the 10th Annual Symposium on Pediatric Device Innovation, co-located with the MedTech Conference, powered by AdvaMed.

This year’s pediatric device innovation awardees are:

  • CorInnova – Houston, TX – Minimally invasive biventricular non-blood contacting cardiac assist device to treat heart failure.
  • Innovation Lab – La Palma, CA – Mechanical elbow brace stabilizes tremors for pediatric ataxic cerebral palsy to improve the performance of Activities of Daily Living (ADLs).
  • Prapela – Biddeford, ME – Prapela’s incubator pad is the first innovation to improve the treatment of apnea of prematurity in over twenty years.
  • Tympanogen – Richmond, VA – Perf-Fix replaces surgical eardrum repair with a nonsurgical clinic procedure
  • Xpan – Concord, Ont. – Xpan’s universal trocar enables safest and most dynamic access and effortless upsizing in conventional/mini/robotic procedures.

“We are delighted to recognize these five innovations with critical NCC-PDI funding that will support their journey to commercialization. Improving pediatric healthcare is not possible without forward-thinking companies that seek to address the most dire unmet needs in children’s health,” says Kolaleh Eskandanian, Ph.D., M.B.A, P.M.P, vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI. “We know all too well how challenging it is to bring pediatric medical devices to market, which is why we have created this rich ecosystem to identify promising medical device technologies and incentivize investment. We congratulate this year’s winning innovators and applaud their efforts to help bridge these important care gaps that are impacting children.”

Empowering Innovators

NCC-PDI is one of five consortia in the FDA’s Pediatric Device Consortia Grant Program created to support the development and commercialization of medical devices for children, which lags significantly behind the progress of adult medical devices. NCC-PDI is led by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National and the A. James Clark School of Engineering at the University of Maryland, with support from partners MedTech Innovator and design firm Archimedic.

A pediatric accelerator program, powered by MedTech Innovator, the largest medical device accelerator in the world, is a key part of the network of resources and experts that NCC-PDI provides in support of pediatric innovators. All five of this year’s competition finalists had an opportunity to participate in the year-long accelerator program.

To date, NCC-PDI has mentored 250 medical device projects to help advance their pediatric innovations throughout all stages of the total product life cycle (TPLC).

Eskandanian adds that supporting the progress of pediatric innovators is a key focus of the new Children’s National Research & Innovation Campus, a one-of-its-kind ecosystem that drives discoveries that save and improve the lives of children. On a nearly 12-acre portion of the former, historic Walter Reed Army Medical Center in Northwest Washington, D.C., Children’s National has combined its strengths with those of public and private partners, including industry, universities, federal agencies, start-up companies and academic medical centers. The campus provides a rich environment of public and private partners which, like the NCC-PDI network, will help bolster pediatric innovation and commercialization.

NCC PDI 2022 pitch competition winners

A total of $150K was awarded to five pediatric innovations during the medical device pitch competition at the 10th Annual Symposium on Pediatric Device Innovation, hosted by the National Capital Consortium for Pediatric Device Innovation (NCC-PDI). Award winners include (from left to right): Zaid Atto, founder and CEO at Xpan; John Konsin, CEO and co-founder of Prapela; Elaine Horn-Ranney, co-founder and CEO at Tympanogen; William Altman, CEO at CorInnova; and Sharief Taraman, pediatric neurologist at CHOC and University of California-Irvine partnering with Innovation Lab. (Photo credit: Children’s National Hospital)

boy with cerebral palsy

Race and salvage hip procedures in cerebral palsy

boy with cerebral palsy

The authors discovered that Black patients had an increased risk compared to white patients of undergoing a salvage procedure for hip dysplasia.

A new study by Children’s National Hospital orthopedic surgeon Sean Tabaie, M.D., FAAOS, examined whether or not race is an independent risk factor for patients with cerebral palsy to undergo a salvage hip procedure or experience postoperative complications for hip dysplasia treatment.

Due to tone issues, patients with cerebral palsy are specifically prone to hip dislocation. Treatment modalities for these patients include preventive soft tissue release, reconstruction and salvage procedures. Reconstructive surgery of the hip joint is considered the gold standard with the goal of producing a mobile and painless hip. Salvage procedures are defined as operations that are used after there has been permanent changes to anatomy of the femur and/or pelvis. In the case of patients with cerebral palsy, when hip reconstruction is no longer an option, salvage procedures are considered a last resort, if not a radical solution, to improve quality of life and pain relief.

Using the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) Pediatric database, Dr. Tabaie and colleagues examined data from 3,906 patients with cerebral palsy between the ages of 2 and 18 years undergoing a procedure for hip dysplasia. They discovered that Black patients had an increased risk compared to white patients of undergoing a salvage procedure for hip dysplasia. Additionally, Black patients were found to have an increased risk of any postoperative complication compared to white patients. Fortunately, there were no significant findings between the race and risk of surgical site complications, unplanned readmissions or reoperations.

The authors conclude that, “After controlling for variability in baseline characteristics, the present results suggest that patient race is independently associated with the risk of pediatric patients with cerebral palsy to both undergo a salvage hip procedure and to experience postoperative medical complications, with Black patients having increased odds for these unfavorable outcomes compared to white patients.”

Dr. Tabaie is the medical director of the Motion Capture and Gait Lab at The Fight for Children Sports Medicine Center at Children’s National Hospital as well as assistant professor of Orthopaedic Surgery and pediatrics co-chair of Diversity, Equity and Inclusion for the Joseph E. Robert Jr., Center for Surgical Care.

Read the full article, Race Is Associated With Risk of Salvage Procedures and Postoperative Complications After Hip Procedures in Children With Cerebral Palsy, in the Journal of Pediatric Orthopaedics.

x-ray of child with dislocated hip

Hip surveillance helps identify dislocations in children with cerebral palsy

x-ray of child with dislocated hip

Hip surveillance is a process used to monitor the hips closely and frequently, identifying the problems earlier.

Children with cerebral palsy (CP) have an increased risk for hip displacement. Hip displacement in children with CP can happen slowly over time and can be painful, but a hip surveillance program can prevent this. Hip surveillance is a process used to monitor the hips closely and frequently, identifying the problems earlier. It is an ongoing process that continues for every child until skeletal maturity.

“Every child with cerebral palsy should be referred for hip surveillance regardless of determination by the Gross Motor Function Classification System,” said Sean Tabaie, M.D., orthopaedic surgeon at Children’s National Hospital.

Dr. Tabaie created a hip surveillance manual for primary care providers who care for this patient population. In most cases, these patients are monitored and followed closely by their primary care team. Education material regarding hip surveillance, including the background knowledge, is often not available to those practitioners in a concise format. To successfully initiate a hip surveillance program, it is important to promote education and provide the appropriate materials to that group of practitioners.

“Our goal is to improve the care of children with cerebral palsy by decreasing the overall presentation of dislocated hips in our clinic settings and promote the appropriate timing of referrals for evaluation of hip subluxation secondary to cerebral palsy or neuromuscular conditions,” said Tabaie.

Download the Surveillance Guidelines for Children with Cerebral Palsy here.

illustration of Research & Innovation Campus

NIH awards $6.7M to build additional lab space at Children’s National Research & Innovation Campus

Children’s National Hospital today announced a $6.7 million award from the National Institute of Health (NIH) for the new Children’s National Research & Innovation Campus (RIC). The funds will help transform a historic building on the former site of Walter Reed Army Medical Center into new research labs. The NIH construction grant marks the first secured grant funding for Phase II of the campus project, signaling continued momentum for the first-of-its-kind pediatric research and innovation hub.

The funding was announced as D.C. Mayor Muriel Bowser, D.C. Deputy Mayor for Planning and Economic Development John Falcicchio and D.C. Council Chair Phil Mendelson took their first tour of the already-renovated Phase I of the RIC. The campus began opening in early 2021 and brings together Children’s National with top-tier research and innovation partners: Johnson & Johnson Innovation – JLABS @ Washington, DC and Virginia Tech. They come together with a focus on driving discoveries and innovation that will save and improve the lives of children.

“This NIH award is the latest confirmation that we are creating something very special at the Children’s National Research & Innovation Campus,” said Kurt Newman, M.D., president and CEO of Children’s National. “Only the D.C. region can offer this proximity to federal science agencies and policy makers. When you pair our location with these incredible campus partners, I know the RIC will be a truly transformational space where we develop new and better ways to care for kids everywhere.”

The campus is an enormous addition to the BioHealth Capital Region, the fourth largest research and biotech cluster in the U.S., with the goal of becoming a top-three hub by 2023. The RIC exemplifies the city’s commitment to building the partnerships necessary to drive discoveries, create jobs, promote economic growth, treat underserved populations, improve health outcomes, and keep D.C. at the forefront of innovation and change.

“We are proud to officially welcome the Children’s National Research & Innovation Campus to the District and to the Ward 4 community,” said Mayor Bowser, after touring the campus. “This partnership pairs a world-class hospital with a top university and a premier business incubator – right here in the capital of inclusive innovation. Not only will our community benefit from the jobs and opportunities on this campus, but the ideas and innovation that are born here will benefit children and families right here in D.C. and all around the world.”

The NIH grant funding announced today will go toward the expansion and relocation of the DC Intellectual and Developmental Disabilities Research Center (DC-IDDRC). This research center will increase the efforts to improve the understanding and treatment of children with developmental disabilities, including autism, cerebral palsy, epilepsy, inherited metabolic disorders and intellectual disability.

The space where the new lab will be built used to be the Armed Forces Institute of Pathology Building, a portion of the Walter Reed Army Medical Center. The site closed and Children’s National secured 12 acres in 2016, breaking ground on Phase I construction in 2018.

The new space will offer highly cost-effective services and unique state-of-the-art research cores that are not available at other institutions, boosting the interdisciplinary and inter-institutional collaboration between Children’s National, George Washington University, Georgetown University and Howard University. Investigators from the four institutions will access the center, which includes hoteling laboratory space for investigators whose laboratories are not on-site but are utilizing the core facilities — Cell and Tissue Microscopy, Genomics and Bioinformatics, and Inducible Pluripotent Stem Cells.

“While we have explored outsourcing some of these cores, especially genomics, we found that expertise, management, training and technical support needed for pediatric research requires on-site cores,” said Vittorio Gallo, Ph.D., interim chief academic officer, interim director of the Children’s National Research Institute, and principal investigator for the DC-IDDRC. “The facility is designed to support pediatric studies that are intimately connected with our community. We operate in a highly diverse environment, addressing issues of health equity through research.”

The RIC provides graduate students, postdocs and trainees with unique training opportunities, expanding the workforce and talent of new investigators in the D.C. area. Young investigators will have job opportunities as research assistants and facility managers as well. The new labs will support these researchers so they can tackle pressing questions in pediatric research by integrating pre-clinical and clinical models.

Phase II will place genetic and neuroscience research initiatives of the DC-IDDRC at the forefront to treat a variety of pediatric developmental disorders. Other Children’s National research centers will also benefit from this additional space. The clinical and research campuses will be physically and electronically integrated with new informatics and video-communication systems.

The total projected cost of Phase II is $180 million, with design and construction to take up to three years to complete once started.

illustration of Research & Innovation Campus

Phase II will place genetic and neuroscience research initiatives of the DC-IDDRC at the forefront to treat a variety of pediatric developmental disorders. Other Children’s National research centers will also benefit from this additional space. The clinical and research campuses will be physically and electronically integrated with new informatics and video-communication systems.

orthopaedics infographic

2020 at a glance: Orthopaedic Surgery and Sports Medicine at Children’s National

The Children’s National Division of Orthopaedics is consistently recognized by U.S. News & World Report as one of the top programs in the nation.

little girl in wheelchair

A holistic and proactive approach to the management of the patients with cerebral palsy

little girl in wheelchair

The cerebral palsy program at Children’s National Hospital takes a comprehensive approach to meet children’s needs from infancy through young adulthood.

Though children with cerebral palsy (CP) often require significant rehabilitative and surgical support, most often each service is provided in the individual specialty itself. Patients and their families frequently experience a great deal of stress coordinating care, getting to appointments, keeping track of medications and managing treatments on their own.

However, the CP program at Children’s National Hospital, co-led by an orthopaedic surgeon, Sean Tabaie, M.D., and a pediatric rehabilitation specialist, Olga Morozova, M.D., working together and in collaboration with Shannon Kelly, M.D., (Orthopaedics) and Jeff Rabin, D.O., (Physical Medicine and Rehabilitation) has evolved into a truly comprehensive approach. The program is designed to meet the needs of these children from infancy through young adulthood with the goal of improving function and preventing musculoskeletal deformities and complications.

Providing children and their families with a single point of care coordination allows the care team to track and anticipate a multitude of potential challenges for each child as early as possible and intervene in smaller ways before they bring pain and long-term complications or require major surgical interventions. Key highlights of this collaborative program include:

  • Hip surveillance: Patients with CP are followed closely to identify hip pathology prior to serious subluxation or dislocation. Early identification allows for the use of medical or surgical interventions to prevent a minor issue from becoming a major one.
  • Serial casting for children with early signs of muscle contractures: Dr. Morozova uses agents to relax the muscles and Dr. Tabaie applies the cast in the operating room followed by continued weekly serial casting in the clinic. “Proper medical management and bracing at regular intervals can improve muscle function and prevent the need for larger surgeries and more intense rehabilitation later,” says Dr. Morozova.
  • Advanced coordination between physical therapy in the hospital and outpatient services in the region, building on the hospital’s partner agreement with the HSC Health Care System.
  • Single event multi-level surgeries (SEMLS): Ensuring that surgical procedures capture all surgical needs at one time by assessing the entire anatomy and scheduling multiple surgical or pharmaceutical interventions to occur in a single session.

The doctors point out that offering these services in one cohesive location and combining treatments into the same appointment or procedure date is something that many patients with CP and their families truly appreciate.

“I think families of children with CP will travel great distances if the care they receive is comprehensive and eliminates some of the back and forth travel they do now,” says Dr. Tabaie.

Today, the team sees close to 100 patients with CP per month and hopes to expand to reach as many families in the region and beyond who need them.

Dr. Tabaie says, “Our goal is to identify patients early and start managing them to help their quality of life today, prepare them to grow as healthily and in as little pain as possible and set them up to be as healthy as they can possibly be as adults, too.”

Pedbot video game

Pedbot’s next step – Home-based therapy

Pedbot video game

Pedbot’s home version adapts the same airplane-themed video game to a smaller therapeutic platform that is more affordable to build.

The novel ankle rehabilitation robot built at Children’s National to help children with cerebral palsy build ankle strength and control through video gaming is taking a big step forward. Engineers have created a smaller, more affordable version of the robotic platform using 3D printed parts, to explore the effectiveness of a home-based therapy program.

“We’re seeing preliminary success in our trial for in clinic use of the Pedbot. Now we’re hoping to see if making the technology accessible at home means that 1) Kids use it more often and 2) More frequent, regular use over time leads to better range of motion,” says Kevin Cleary, Ph.D., the Sheikh Zayed Institute for Pediatric Surgical Innovation’s bioengineering technical director and engineering lead for Pedbot.

Pedbot’s video game, designed by software engineer Hadi Fooladi, M.S., allows kids to pilot an airplane through a series of hoops at varying speeds as determined by the therapist and programmer. The game isn’t the only thing that’s unique about this therapeutic robot, however.

Just like the clinic version, the home model moves in three translational directions (x, y and z) and rotates about three axes (the x, y and z axes), similar to the movement of a flight simulator. The result is a robot that helps the patient exercise across a greater range of motion and build muscle strength in a way that more closely mimics real-life ankle function.

Pedbot Home potentially eliminates an additional major therapeutic barrier – the clinic appointment.

“The great thing about Pedbot is you’re constantly working to reach a moving target, and the therapist can vary the movement type as much or as little as needed for each patient,” says Catherine Coley, DPT, a physical therapist at Children’s National who is a member of the Pedbot development team. “We think the home version might make it easier for the child to succeed with a long term therapy program by removing the need for repeat clinic visits.”

“What if a child could come home from school and do their therapy at home after dinner? Would doing it every day for 20 minutes benefit the child more than just coming to see us once or twice a week for an hour? Can we make it easier for our patients to cooperate and follow through with therapy homework? These are some of the questions that we hope we can answer during our trial for the home version,” says Sally Evans, M.D., division chief of Pediatric Rehabilitation Medicine at Children’s National and clinical lead for the project.

The cross-functional Pedbot team includes engineers Reza Monfaredi Ph.D. and Tyler Salvador, B.S., as well as additional physical therapists, Stacey Kovelman, P.T. and Justine Belchner, P.T., and Sara Alyamani, B.A. Future expansions will include the addition of electromyography measurements in collaboration with Paola Pergami, M.D., Ph.D. and incorporation of other patient populations with Beth Wells, M.D.

Pedbot Home is currently being piloted in the home setting, with the goal of enrolling additional families to participate in a trial within the next year. The work is supported by a $500,000 federal grant from the Department of Health and Human Services’ National Institute on Disability, Independent Living, and Rehabilitation Research.

Pedbot video game

New robotic therapies for cerebral palsy

Little girl on hippobot

The hippobot is a mechanical horseback riding simulator that provides hippotherapy for children.

Cerebral palsy is the most common type of movement disorder in children, affecting 1 in 500 babies born each year. For these infants, learning to sit up, stand and walk can be a big challenge which often requires years of physical therapy to stretch and strengthen their muscles. A team led by Kevin Cleary, Ph.D., technical director of the Bioengineering Initiative at Children’s National Health System, and Sally Evans, M.D., director of Pediatric Rehabilitation Medicine at Children’s National, has created two new types of robotic therapy that they hope will make physical therapy more enjoyable and accessible for children.

Hippobot equine therapy simulator

One of the most effective types of therapy for children with cerebral palsy is hippotherapy, which uses horseback riding to rehabilitate children with neurological and musculoskeletal disabilities. The movement of horses helps riders with cerebral palsy improve endurance, balance and core strength, which in turns helps them gain the ability to sit without support. If a child with cerebral palsy does not master independent sitting early in life, he or she may never gain the ability to stand or walk. Unfortunately, many children never have the chance to experience hippotherapy due to geographical constraints and cost issues.

To increase patient access to hippotherapy, the bioengineering team (Reza Monfaredi, Ph.D.; Hadi Fooladi Talari, M.S.; Pooneh Roshani Tabrizi, Ph.D.; and Tyler Salvador, B.S.) developed the hippobot — a mechanical horseback riding simulator that provides hippotherapy for children ages 4 to 10 in the office setting. To create the hippobot, the researchers mounted a carousel horse on a six-degree of freedom commercial motion platform (the platform moves in the x, y and z directions and rotates about roll, pitch and yaw axes). They then programmed the platform to simulate a horse walking, trotting and cantering.

“Several experienced horse riders have tried the motion platform and commented that it gives a realistic feel,” says Dr. Cleary.

The team then incorporated optical tracking of the hippobot rider’s spine and pelvis to monitor their posture and created a virtual reality video display that simulates a horse moving down a pier. As other animals come towards the horse, the rider must lean right or left to avoid them.  The trackers on their back show which way they are leaning and feed that information into the gaming system.

“We wanted to see how the patient’s spine reacts as the horse moves through different patterns, and if the patients get better at maintaining their posture over several sessions,” says Dr. Cleary.

To date the system has been used with several children with cerebral palsy under an IRB-approved study. All of the participants enjoyed riding the horse and came back for multiple sessions.

The hippobot system was developed in close collaboration with the Physical Medicine and Rehabilitation Division at Children’s National, including Olga Morozova, M.D., Justin Burton, M.D., and Justine Belschner, P.T.

Pedbot ankle rehabilitation system

Pedbot video game

Patients use pedbot as an input device to pilot an airplane through a series of hoops. The level of the difficulty of the game can be easily adjusted based on the patient’s capability and physical condition.

More than half of children with cerebral palsy also have gait impairment as a result of excessive plantar flexion and foot inversion/eversion, or equinovarus/equinovalgus at their ankle and foot. To help these patients, Dr. Cleary’s team developed the pedbot — a small robot platform that enables better strengthening, motor control and range of motion in the ankle joint.

“Children with cerebral palsy have difficulty walking in part because they have trouble controlling their feet,” explains Dr. Evans. “Use of pedbot as part of therapy can help to give them increased control of their feet.”

Most ankle rehabilitation robots are limited in their movements, and have only one or two degrees of freedom, focusing on ankle dorsiflexion/plantarflexion and sometimes inversion/eversion. Pedbot is unique in that it has three degrees of freedom with a remote center of motion in the ankle joint area that allows it to move in ways other devices can’t.

The pedbot platform can move in three translational directions (x, y and z) and also rotate about three axes (the x, y and z axes). As an analogy, this is similar to the movement of a flight simulator. The system also includes motors and encoders at each axis and can be used in passive and active modes.

In both modes, the patient sits on a therapy chair with their foot strapped to the robotic device. In the passive mode, the therapist assists the patient in training motions along each axis. The robot can then repeat the motion under therapist supervision while incrementally increasing the range of motion as desired by the therapist.

For the active mode or “gaming” mode, the team developed a video game based on an airplane motif. Patients use pedbot as an input device to pilot an airplane through a series of hoops. The level of the difficulty of the game can be easily adjusted based on the patient’s capability and physical condition.

To date, four patients have participated in an IRB-approved clinical trial for the pedbot. All of the patients enjoyed the game and they were willing to continue to participate as suggested by a physiotherapist.

The pedbot team, in addition to the engineers mentioned above, includes Catherine Coley, P.T.; Stacey Kovelman, P.T.; and Sara Alyamani, B.A. In future work, they plan to expand the system to include electromyography measurements with Paola Pergami, M.D.,Ph.D. They also are planning to develop a low cost, 3D printed version for the home market so children can do Pedbot therapy every day.

Chima Oluigbo

The benefits of deep brain stimulation for pediatric patients

Chima Oluigbo

There was no effective treatment for uncontrolled, difficult, and sometime painful movements associated with movement disorders. That is, before the development of deep brain stimulation (DBS) techniques.

Children’s National Health System is one of only two children’s hospitals with fully integrated DBS programs. Chima Oluigbo, M.D., who leads the pioneering Deep Brain Stimulation Program within Children’s Division of Neurosurgery, is one of few pediatric deep brain stimulation experts in North America and cross-trained in pediatric and functional neurosurgery.

Dr. Oluigbo says the effects of DBS are often dramatic: 90 percent of children with primary dystonia show up to 90 percent symptom improvement.

A 6-year-old boy with dystonia so severe that his body curved like a “C” was one of the first patients to undergo the procedure at Children’s National. Six weeks later, he gained the ability to sit straight and to control his hands and legs. He also was able to smile, an improvement that brought particular joy to his parents.

Inside the brain with movement disorders

Patients with movement disorders experience difficulties due to neurological dysfunction that impact the speed, fluency, quality, and ease in which they move. In these cases, neurons in the brain’s motor circuits misfire. Through the use of DBS, neurosurgeons can synchronize neuronal firing and accomplish the previously impossible: restoring muscle control to patients with these disorders.

Movement disorders are common in children. “It’s not just numbers, it’s also about impact. Think about the potential of a child who is very intelligent and can contribute to society. When that child is not able to contribute because he or she is disabled by a movement disorder, the lost potential is very significant. It has an impact,” Dr. Oluigbo says.

What is deep brain stimulation?

DBS uses an implantable device to send continuous, low-level electrical impulses to areas deep within the brain. The impulses prevent the brain from firing abnormal signals that are linked to movement disorders and seizures. When a child is considered to be a candidate for the technique, here’s what happens next:

  1. Imaging: Magnetic resonance imaging (MRI) helps pinpoint the area of brain tissue responsible for movement disorders and informs the treatment plans.
  2. Neurotransmitter implant procedure: Using minimally invasive neurosurgery techniques, doctors access the brain through a tiny incision in the child’s skull and place thin, insulated wires (leads) in the area of brain tissue responsible for the condition.
  3. Pulse generator implant procedure: The pulse generator (neurostimulator) is a battery-operated device that sends low-level electrical impulses to the leads. During a separate procedure, the pulse generator is implanted near the child’s collarbone. Leads are threaded under the child’s skin to connect with the pulse generator.
  4. Stimulation treatments: Once the leads and pulse generator are connected, the child receives a continuous stream of electrical impulses. Impulses are generated by the neurostimulator, travel through the leads, and end up in the deep tissue of the brain. Here, they block abnormal signals that are linked to the child’s movement disorder.
  5. Follow-up care: The child will likely need deep brain stimulation throughout his or her lifetime to make sure the device is working correctly and to adjust the neurotransmitter settings to meet his or her changing needs.

Deep brain stimulation at Children’s National

Children’s National is currently conducting clinical trials seeking to expand the use of this procedure to patients with cerebral palsy, one of the most common dystonias. The effective use of deep brain stimulation requires ongoing attention from a multidisciplinary team (from neuropsychology to rehabilitation medicine), giving seamless care under one roof.

There is evidence to suggest that this technique could be used to aid people with memory disorders, patients in minimally conscious states, and patients with incurable epilepsies.