Tag Archive for: Center for Cancer and Immunology Research

teenager receiving an intravenous infusion

Novel cell therapy treatments offer promise to immune-compromised children

teenager receiving an intravenous infusion

In a first-of-its-kind clinical trial, researchers found that intravenous therapies made from virus-specific T-cells (VST) can effectively treat immunocompromised pediatric patients, far surpassing the current standard of care, according to new research published in Nature Communications.

More than 60% of patients in the phase 2 clinical trial led by investigators from Children’s National Hospital and Huntsman Cancer Institute responded to the innovative VST therapy. This new treatment uses blood from healthy donors to manufacture a highly specialized immune therapy that, when given to immune-compromised patients, prompts their immune system to fight off potentially life-threatening viruses, including cytomegalovirus, Epstein-Barr and adenovirus. Without this therapy, estimates suggest that less than 30% of patients would recover, using standard protocols.

“A vast majority of our patients not only responded to the therapy, but they were able to come off their antivirals, which come with extensive side effects,” said Michael Keller, M.D., the paper’s first author and the Translational Research Laboratory director at the Children’s National Cell Enhancement and Technologies for Immunotherapy (CETI) program. “This promising data suggests hope for patients with rare immune-compromising diseases that leave them vulnerable to so much in the world.”

The study brings together experts from the Pediatric Transplantation and Cell Therapy Consortium (PTCTC) and the Primary Immune Deficiency Treatment Consortium (PIDTC) to create the first multi-center, pediatric-consortium trial of adoptive T-cell therapies for viruses. It also represents one of the first to include critically ill patients, who are often excluded from research.

Children’s National leads the way

Working alongside Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research (CCIR), Dr. Keller and the CCIR team helped build an internationally recognized program, pioneering therapies to prevent complications from viral infections in immunocompromised patients. This includes patients with congenital immune deficiency and others who have undergone bone marrow transplantation for malignancies or non-malignant conditions, such as sickle cell disease.

While doctors can treat some immune-compromised patients for infections with standard antivirals, a small fraction don’t respond. Children’s National is one of a handful of hospitals in the country that has options. Over the last several decades, researchers have found ways to develop VST therapies made from banked T-cells, a more advanced application of how donated red blood cells are used to treat anemia.

In 2017, Drs. Keller and Bollard started collaborating with Michael Pulsipher, M.D.—now with Intermountain Primary Children’s Hospital and the Huntsman Cancer Institute at the University of Utah—to create a multi-institute clinical study. They combined the expertise at Children’s National in producing and banking cell therapy products with the community built around the PTCTC. Ultimately, they launched a clinical trial that was open to 35 centers in the U.S., enrolling 51 patients at 22 hospitals from 2018-2022.

“We wanted to prove that this potentially life-saving therapy could be given safely at regional pediatric centers that had never been able to use this approach before,” said Dr. Pulsipher, who served as the study’s co-principal investigator with Dr. Keller. “We united top experts in this area from the PTCTC and PIDTC and successfully treated some of the most challenging patients ever treated with this approach. Our findings helped define who can benefit the most from this therapy, paving the way for commercial development.”

The Good Manufacturing Practices (GMP) laboratory at Children’s National, led by Patrick Hanley, Ph.D., provided suitable VST therapies for 75 of 77 patients who requested to join the study. Clinical responses were achieved in 62% of patients who underwent stem cell transplants and in 73% of patients who were treated with VST and evaluated one month after their infusion. The paper laid out risks and clinical factors impacting outcomes when third-party donors are used to manufacture the VST therapies.

What’s ahead

Given that researchers are only beginning to develop cell therapies, work remains to understand the many ways they interact with the immune system. In a separate paper also recently published in Nature Communications, members of the multi-institute team documented a case of an infant with severe combined immune deficiency, who faced extremely rare side effects when the VST treatment interfered with her donor bone marrow graft. The case led the team to work with the Food and Drug Administration to identify criteria for VST donors enrolled in this study to mitigate complications.

In the decade ahead, Dr. Bollard sees promise in cell therapies for patients with cancer, immune deficiencies after transplant and dozens of other disorders, including genetic and autoimmune diseases. “Future studies will continue to look at ways to optimize the manufacturing, the administration and the long-term outcomes for these therapies—and to enhance the lifelong impact on our patients,” she said. “When we pair human ingenuity with the power of technology, I see tremendous potential.”

Acknowledgments: This study was funded with a nearly $5 million grant from the California Institute of Regenerative Medicine and was run through the operations center at the Children’s Hospital of Los Angeles, where Dr. Pulsipher was formerly on faculty.

Auditorium at the Cell and Gene Therapy in the DMV Symposium

Cell & Gene Therapy in the DMV: Experts collaborate for cures

Leaders in medicine, academia, industry and state and local government came together for the first annual Cell and Gene Therapy in the DMV Symposium, hosted at the Children’s National Research & Innovation Campus. The mission: Connect the local scientific community – bursting with expertise and collaboration potential – to develop these cutting-edge therapies for cancers, sickle cell disease and immune-mediated disorders.

The daylong event drew over 100 experts from a range of organizations in the D.C, Maryland and Virginia region, sometimes called the DMV: Children’s National Hospital, the Food and Drug Administration, the National Institute of Standards and Technology, the National Institutes of Health, the General Accounting Office, Virginia Tech, MaxCyte, AstraZeneca, Kite Pharma, Montgomery College, the Maryland State Department of Commerce and more. Together, they unraveled a host of topics including the regulatory environment, workforce development and training, research standards and the promise of these therapies.

“Our Cell & Gene Therapy Symposium brings together our current collaborators and future partners in the D.C., Maryland and Virginia space, which is an incredibly rich area. We see tremendous opportunity and breakthroughs in our future,” said Catherine Bollard, M.D., M.B.Ch.B., interim chief academic officer and chief of Pediatrics at Children’s National Hospital. “Many different diseases rely on the immune system to either be ramped up or to be controlled, and we can seize on these biological processes. Cell and gene therapies are at the heart of where medicine is going.”

The big picture

For decades, oncologists largely have turned to the same menu of treatments to fight cancer, including surgery, chemotherapy and radiation. Cell and gene therapies offer the promise of training the immune system to fight diseases with fewer side effects and potentially higher success rates. Early work has shown progress in liquid cancers, like leukemia, raising the possibility that the therapies could be used on solid tumors and other disorders, such as lupus and sickle cell disease. However, many disciplines must come together to yield discoveries.

“Nobel Prize-winning work doesn’t necessarily translate into available therapies for patients. It takes a whole community like this to make it happen,” said Cenk Sumen, chief scientific officer at MaxCyte Inc., an international cell engineering company based in Rockville, Md. “It has been exciting to see this diverse group of stakeholders come together, which is probably unmatched anywhere on the planet.”

Why we’re excited

Symposium host Patrick Hanley, Ph.D., chief and director of the Cellular Therapy Program at Children’s National, said the goal was to cement the region as the No. 1 location for this highly technical research and development. He believes Children’s National can offer essential elements to this success, given its clinical and research expertise, workforce training opportunities and geographic proximity to the scientific leadership of the federal government. “What makes us unique is our proximity to all the players who can help create new treatment options for patients. We truly are the biomedical capital of the world,” he said.

Michael Friedlander, vice president for health sciences at Virginia Tech, notes that the earliest stages of invention will emanate from academic labs including those at Virginia Tech and Children’s National. “You have basic scientists who are doing fundamental research on properties and procedures that will lead to the new therapies of tomorrow,” he said. “We are putting in place the fundamental pieces to advance children’s health in all dimensions.”

What’s ahead

One challenge is developing a workforce to help prepare cell therapies for patients, following precise standards to ensure the therapy works as designed. Children’s National does this training, as do others in the region. Lori Kelman, Ph.D., M.B.A., biotechnology coordinator and professor at Montgomery College, said that the area is full of people who want to help people and who like science.

“The thing that people might not know is that you don’t need a Ph.D. to work in cell and gene therapy,” she said. “There are opportunities at all levels, including the entry level, which is where a great career often starts.”

Cancer cells

Searching for the key to treating neuroblastoma tumors in kids

Cancer cells

Jianhua Yang, Ph.D., has dedicated his research to finding the molecular mechanism of neuroblastoma development and is working to develop novel therapeutics.

There continues to be an urgent need to identify novel therapies for childhood cancers. Neuroblastoma (NB) is the most common malignant solid tumor in children and contributes to more than 15% of all pediatric cancer-related deaths. Despite strides made in chemotherapy treatment over the past 30 years, NB largely remains an incurable disease. That’s why Jianhua Yang, Ph.D., associate professor and research faculty at the Center for Cancer and Immunology Research at Children’s National Hospital, has dedicated his research to finding the molecular mechanism of NB development and is working to develop novel therapeutics to target molecules he and his team identify in the lab.

Q: What has driven you to do this research?

A: In order to design better and potentially more effective NB treatment approaches, we must further understand the mechanism that activates NB development. We don’t know what that mechanism is yet, and that’s what we’re working to unlock. I felt with my training in cell biology and immunology, I could use that background to help develop novel therapies.

The research is hard and can often times feel frustrating. But I feel I’m working on something that has the potential to make a huge difference. I tell the researchers I work with that you have to really believe in what we’re doing. We’re doing something very different. Before I moved to D.C. to join Children’s National, I sent a text to a former mentor to let him know I was joining the team here to continue my work. His reply said, “I’ve always had confidence in you,” and it’s that type of encouragement that drives me to keep going.

Q: What is your current focus in this area?

A: Specifically, we’re working on two targets right now:

  1. To define the role and regulation of CaM kinase-like vesicle-associated (CAMKV) in NB development and examining the therapeutic potential of CAMKV kinase inhibition for treating NB in pre-clinical models. We’ve found that CAMKV is highly expressed in NB tumor samples and its kinase activity is required for tumor growth. So, if we knock out this gene, tumor cells will die. We’re studying how it is being activated, and if we can find out what causes it, we can find a way to inhibit its activation. Targeting CAMKV is a novel concept for treating NB. CAMKV kinase inhibitors may serve not only as stand-alone therapies but also as effective adjuncts to current chemotherapeutic regimens treating this aggressive pediatric malignancy.
  2. To define the role and regulation of transmembrane protein 108 (TMEM108) in NB development and examine the therapeutic potential of TMEM108 functional blockade for treating NB in pre-clinical models. Evolutionarily, in human genome it has no other family member, it’s a loner. And if you knock it out in NB tumor cells, tumor cells will die. We’re learning how it functions through our basic research, which is quite difficult. But we’re thinking if we can find the antibody to bind to it and block its function, we could stop the tumor from growing or even cause the tumor to die.

Q: What excites you about doing this work within the Center for Cancer and Immunology Research?

A: At Children’s National, I’ll be able to combine my work with the incredible work in immunotherapy that Drs. Catherine Bollard and Muller Fabbri are doing. I’m excited to be here to have that strong collaboration with their labs to develop new therapies.

In the next 5 years, I feel we’ll be able to identify good blocking antibodies that we can then test combinations of to see how it blocks tumor growth. If we can find ways to combine that antibody therapy with traditional chemotherapy options, we can achieve a real cure for NB.

Learn more about the Center for Cancer and Immunology Research.

Dr. Bollard and her laboratory

Catherine Bollard, M.D., M.B.Ch.B., selected to lead global Cancer Grand Challenges team

Dr. Bollard and her laboratory

Cancer Grand Challenges NexTGen team members (left to right): Amy Hont, M.D., AeRang Kim, M.D., Nitin Agrawal, Ph.D., Catherine Bollard, M.D., M.B.Ch.B., Conrad Russell Cruz, M.D., Ph.D., Patrick Hanley, Ph.D., and Anqing Zhang.

A world-class team of researchers co-led by Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at Children’s National Hospital, has been selected to receive a $25m Cancer Grand Challenges award to tackle solid tumors in children. Cancer Grand Challenges is a global funding platform, co-founded by Cancer Research UK and the National Cancer Institute in the U.S., that supports a community of diverse, global teams to come together, think differently and take on some of cancer’s toughest challenges.

The Cancer Grand Challenges NexTGen team, co-led by University College London’s Martin Pule, M.D., will be working to develop next-generation cell therapies for children with solid cancers. Cancer is a leading cause of death by disease in children worldwide. Although survival has increased for some pediatric cancers, such as blood cancers, survival for some solid tumors has seen little improvement for more than 30 years. The team hopes to build a much deeper understanding of childhood cancers and develop and optimize novel therapies for children with solid tumors, ultimately hoping to improve survival and diminish the lifelong toxicities often experienced by survivors.

“With our Cancer Grand Challenge, we hope to bring next-generation CAR T-cell therapies to children with solid tumors,” said Dr. Bollard. “What excites me most is the energized, passionate group of people we’ve brought together to take this challenge on. Big problems remain to be addressed, but we believe they can be solved, and that we’re the team to solve them.”

“NexTGen represents crucial and overdue work. It has hope written all over,” said Sara Wakeling, patient advocate on the team and CEO and co-founder of Alice’s Arc, a children’s charity for rhabdomyosarcoma. “NexTGen hopes to transform the way these aggressive solid tumors are treated with less toxic side-effects, giving the children a real chance at growing up and realizing their potential. I’m so proud to be part of this exceptional team of scientists, clinicians and advocates who want to change the story for those diagnosed.”

The NexTGen team unites scientists and clinicians with expertise in immunology, proteomics, mathematics and more, across eight institutions throughout the U.S., U.K. and France. The Children’s National investigators that will also join are:

  • Nitin Agrawal, Ph.D., associate professor in the Center for Cancer and Immunology Research at Children’s National.
  • Conrad Russell Cruz, M.D., Ph.D.,principal investigator for the Program for Cell Enhancement and Technologies for Immunotherapies at Children’s National.
  • Patrick Hanley, Ph.D., chief and director of the cellular therapy program at Children’s National and leader of the Good Manufacturing Practices laboratory.
  • Amy Hont, M.D., oncologist in the Center for Cancer and Immunology Research at Children’s National.
  • AeRang Kim, M.D., oncologist in The Center for Cancer and Blood Disorders at Children’s National.
  • Holly Meany, M.D., oncologist in The Center for Cancer and Blood Disorders at Children’s National.
  • Anqing Zhang, biostatistician in the Biostatistics and Study Methodology Department at Children’s National.

The team, co-funded by Cancer Research UK, the National Cancer Institute and The Mark Foundation for Cancer Research, aims to bring much needed new treatments to children with solid cancers.

The NexTGen team is one of four new teams announced today as part of Cancer Grand Challenges, representing a total investment of $100m to diverse, global teams to take on some of the toughest challenges in cancer research.

“Cancer is a global issue that needs to be met with global collaboration. This investment in team science encourages diverse thinking to problems that have long hindered research progress,” said David Scott, Ph.D., director of Cancer Grand Challenges, Cancer Research UK. “Cancer Grand Challenges provides the multidisciplinary teams the time, space and funding to foster innovation and a transformative approach. NexTGen is one of four newly funded teams joining a scientific community addressing unmet clinical needs across cancer research.”

Find out more

Cancer Grand Challenges supports a global community of diverse, world-class research teams with awards of £20m/$25m to come together, think differently and take on cancer’s toughest challenges. These are the obstacles that continue to impede progress and no one scientist, institution or country will be able to solve them alone. Cancer Grand Challenges teams are empowered to rise above the traditional boundaries of geography and discipline.

Founded by the two largest funders of cancer research in the world – Cancer Research UK and the National Cancer Institute* in the U.S. – Cancer Grand Challenges aims to make the progress against cancer we urgently need. Cancer Grand Challenges currently supports more than 700 researchers and advocates across 10 countries, representing 11 teams are supported to take on 10 of the toughest challenges in cancer research.

The Cancer Grand Challenges NexTGen team, announced June 16, 2022, is taking on the initiative’s Solid Tumours in Children challenge. It is led by Dr. Bollard (Children’s National) and Dr. Pule (University College London), along with 23 co-investigators and 7 patient advocates, and is spread across eight institutions across the U.S., U.K. and France: Cardiff University; Children’s Hospital of Philadelphia; Children’s National Hospital; INSERM; the Institute of Cancer Research; Stanford Medicine; Stanford University; University College London. The Cancer Grand Challenges NexTGen team is funded by Cancer Research UK, the National Cancer Institute in the U.S. and The Mark Foundation for Cancer Research.

*The National Cancer Institute is part of the National Institutes of Health.

 

Jia-Ray Yu

Virginia Tech announces cancer biologist to launch lab at Children’s National Research & Innovation Campus

Jia-Ray Yu

Jia-Ray Yu, Ph.D., will be an assistant professor at Virginia Tech’s Fralin Biomedical Research Institute at Virginia Tech Carilion and in the Department of Biomedical Sciences and Pathobiology in the Virginia-Maryland College of Veterinary Medicine, as well as an adjunct assistant professor at Children’s National Hospital starting Sept. 1.

Every year, 790 Americans are diagnosed with a rare and deadly form of brain cancer called a diffuse midline glioma, according to the National Cancer Institute. Tragically, only 2% of children with this disease will survive five years.

Jia-Ray Yu, Ph.D., a new assistant professor joining the Fralin Biomedical Research Institute at Virginia Tech Carilion and the Department of Biomedical Sciences and Pathobiology on Sept. 1, studies these fast-growing, treatment-resistant brain tumors, which commonly affect children, with hopes of identifying new therapeutic approaches. Yu will be the first of several cancer researchers to work in Virginia Tech’s brand-new research facility on the Children’s National Research & Innovation Campus in Washington, D.C.

“This disease is fatal and there is no cure. Any hint at a potential therapeutic pathway could be helpful,” said Yu, who will also hold an adjunct faculty position in the Children’s National Hospital Center for Cancer and Immunology Research.

Michael Friedlander, Virginia Tech’s vice president for health sciences and technology, and executive director of the Fralin Biomedical Research Institute, led Yu’s recruitment.

“Jia-Ray Yu is one of the rising leaders in understanding the molecular substrates of aggressive forms of pediatric brain cancer that can contribute to the identification of innovative therapeutic approaches. Moreover, his fundamental research into chromatin remodeling is at the very forefront of this area of emerging area importance in molecular biology,” Friedlander said. “We are very fortunate to have been able to attract Dr. Yu to Virginia Tech as we grow our greater cancer research community and our partnership with one of the nation’s pre-eminent children’s health care delivery and research systems, Children’s National Hospital.”

Yu studies how genes change when an ordinary brain cell develops malignant traits.

In particular, he examines changes in proteins called histones that spool strands of DNA molecules into a substance called chromatin, which forms chromosomes. In addition to packing genetic material into cells, these structures also play a key role in telling genes when to turn on or off.

Faulty histone proteins alter the chromatin’s structure, which in turn garbles the genetic instructions that regulate a cell’s behavior, growth rate, and identity. Furthermore, when this defective cell divides, its two daughter cells inherit the original cell’s chromatin, the malignant traits are passed on, and the cancer grows.

“These epigenetic features of chromatin are distinct from the DNA itself, yet they are inherited during cellular division,” said Yu.

Yu said 80% of tumors from diffuse midline gliomas begin with one cell that has a histone gene defect. He found when this tiny piece of a specific histone, called H3K27, stops working properly, it creates a series of domino-like reactions that cause normal cells to become cancerous.

Yu recently examined this molecular cascade as a postdoctoral fellow in the lab of Danny Reinberg, Terry and Mel Karmazin Professor in the NYU Grossman School of Medicine Department of Biochemistry and Molecular Pharmacology, and senior Howard Hughes Medical Institute Investigator.

The research team identified two genes, NSD1 and NSD2, appear to be the molecular fingers that tap the histone domino. When these genes are disabled, diffuse midline gliomas stop growing in a cultured lab dish, and in animal models. They also identified signaling pathways that could be targets for new drug therapies. Their findings are available in pre-print and will be published this summer in Science Advances.

Yu’s laboratory at the new Children’s National Research & Innovation Campus in Washington, D.C., will build on this fundamental question: How can chromatin-associated molecules be targeted to stop aggressive cancers?

Yu says that as he studies the molecular genesis of diffuse midline glioma, he may also identify therapeutic approaches for other diseases, such as leukemia and Sotos syndrome, that involve mutations in these chromatin-associated molecules.

His research team will combine biochemistry, single-molecule imaging, next-generation sequencing, biophysics, and preclinical research to develop and test new pharmaceutical alternatives to chemotherapy and radiation.

Yu was awarded a three-year American Cancer Society Postdoctoral Fellowship while working in Reinberg’s laboratory.

He completed a bachelor’s degree in biological science and technology at National Chiao Tung University in Taiwan, and his doctoral degree in genetics at Stony Brook University and Cold Spring Harbor Laboratory, where he studied signaling pathways in lung adenocarcinoma metastasis.

Recruitment for research positions in the Yu lab begins this summer.

T cell

Children’s National Hospital scientists shortlisted for Cancer Grand Challenges funding

T cell

If successful, the team would seek to tackle the challenge of solid tumors in children. The vision is to bring engineered T-cell therapies to the routine treatment of these children within a decade.

A diverse, global team of scientists, led by University College of London and Children’s National Hospital/George Washington University, has been selected for the final stages of Cancer Grand Challenges – and is in with a chance of securing a share of £80 million (c.$111 million) of funding to take on one of cancer’s toughest problems.

Nearly 170 teams submitted ideas for this round of awards, and the NGTC team, which stands for ‘Next Generation T-cell therapies for childhood cancers, led by Martin Pule, Ph.D., University College of London, and Catherine Bollard, M.B.Ch.B., M.D., Children’s National Hospital and George Washington University, is one of 11 shortlisted groups.

The team draws together a unique set of expertise, uniting researchers from the U.K., U.S. and France. Other team members from Children’s National include Conrad Russell Cruz, M.D., Ph.D., principal investigator for the Program for Cell Enhancement and Technologies for Immunotherapies, and Nitin Agrawal, Ph.D., associate professor in the Center for Cancer and Immunology Research (CCIR). Up to four winning teams will be announced in early 2022.

If successful, the NGTC team would seek to tackle the challenge of solid tumors in children. The team says that the scientific and medical communities are beginning to understand that solid tumors in children are very different from those in adults – if they could understand more about these differences and find new ways to target them, they could create new ways to better treat children’s cancers.

The NGTC team’s vision is to bring engineered T-cell therapies to the routine treatment of these children within a decade.

Through a series of ambitious studies, the team hopes to identify suitable, pediatric tumor-specific targets for engineered T-cells, including previously unexplored options like glycolipids or the immunopeptidome. They also hope to explore whether treatment effectiveness can be boosted by modulating the tumor microenvironment – which can inhibit T-cell therapies but is yet to be suitably studied in children’s cancers. The team has a strong translational focus and the most promising new treatment avenues would be explored in preclinical and early clinical studies.

“We’re tremendously excited to have this opportunity to work together and strive closer to our vision – to improve the lives of the patients we serve,” says joint team lead Dr. Bollard, who is also the director of the Center for Cancer and Immunology Research at Children’s National.

“This round of Cancer Grand Challenges has demonstrated the fresh thinking that can be sparked when global teams unite across disciplines to bring new perspectives to tough challenges,” says Dr. David Scott, Ph.D., director of Cancer Grand Challenges. “We were thrilled to receive such a strong response from the global research community.”

Find out more at cancergrandchallenges.org.

Muller Fabbri

Children’s National Hospital welcomes Muller Fabbri, M.D., Ph.D.

Muller Fabbri

Dr. Fabbri joins Children’s National from the University of Hawaii Cancer Center, where he was a tenured associate professor and leader of the Cancer Biology Program. He received his medical degree at the University of Pisa in Italy and his Ph.D. degree at the Second University of Naples in Italy.

Children’s National Hospital is pleased to announce it has selected Muller Fabbri, M.D. Ph.D., as associate director for the Center for Cancer and Immunology Research at the Children’s National Research Institute. In this role, he will build and lead the Cancer Biology Program while developing and conducting basic and translational research. Dr. Fabbri will also develop multidisciplinary research projects with various clinical divisions, including oncology, blood and marrow transplantation, pathology and hematology.

A distinguished lecturer, instructor, researcher, public speaker and mentor, Dr. Fabbri’s research interest focuses on decoding cancer cellular biology riddles that lead to personalized medicine. He has pioneered a theory that explains non-coding RNAs’ functioning in intercellular communication that promotes cancer cell growth, dissemination and drug resistance. To better understand the immune response against cancer cells, he has investigated the role of exosomes and other extracellular vesicles. Inflammation, tumor microenvironment and immunity, as it relates to cancer, are other research areas of interest.

“I feel fortunate to be working with Dr. Catherine Bollard and her team at an extraordinary research center,” said Dr. Fabbri. “I am eager to join Children’s National, and I look forward to learning from this leadership team, which also includes Dr. Vittorio Gallo, Dr. Mark Batshaw and Dr. Jeffery Dome.”

Dr. Fabbri was drawn to Children’s National because of its proximity to partners like the National Institute of Health (NIH), the Food Drug Administration (FDA), various universities and the private sector, fostering a rich scientific environment. One of Dr. Fabbri’s many goals, is to make sure that the Cancer Biology Program plays a central role in the acquisition of an NCI-Designated Cancer Center recognition often given to institutions that stand out in scientific leadership and clinical research.

Dr. Fabbri joins Children’s National from the University of Hawaii Cancer Center, where he was a tenured associate professor and leader of the Cancer Biology Program. He received his medical degree at the University of Pisa in Italy and his Ph.D. degree at the Second University of Naples in Italy.

t-cells attacking cancer cell

Children’s National spin-out cell therapy company receives funding

t-cells attacking cancer cell

Ongoing efforts by researchers at Children’s National Hospital to improve T-cell therapies have led to a spin-out company MANA Therapeutics which has announced a $35 million Series A financing. MANA is a clinical stage company creating nonengineered, allogeneic and off-the-shelf cell therapies that target multiple cancer antigens. Its EDIFY™ platform aims to educate T-cells that target multiple target multiple cell surface and intracellular tumor-associated antigens across a broad range of liquid and solid tumors, with an initial focus on relapsed acute myeloid leukemia (AML).

MANA was founded in 2017, and was based on the research and human proof-of-concept clinical trials conducted by Catherine Bollard, M.D., M.B.Ch.B., Conrad Russell Y. Cruz, M.D., Ph.D., Patrick Hanley, Ph.D. and other investigators at Children’s National along with their colleagues at Johns Hopkins Medical Center. The trials demonstrated safety and anti-tumor activity of MANA’s approach, and Children’s National provided an exclusive license to MANA to further develop this promising technology into commercial products in the field of immuno-oncology.

MANA Therapeutics recruited an experienced leadership team from industry including Martin B. Silverstein, M.D., president and CEO, who is a former senior executive at Gilead Sciences when they acquired Kite Pharma, one of the leading cell therapy companies, as well as Madhusudan V. Peshwa, Ph.D., chief technology officer, who joined from GE Health Care where he had been Chief Technology Officer and Global Head of R&D for Cell and Gene Therapies.

“MANA is building upon the strong foundational science established at Children’s National with a unique approach that promises to produce off-the-shelf allogeneic therapies that do not compromise on safety or efficacy,” said Marc Cohen, co-founder and executive chairman of MANA Therapeutics. “I look forward to continuing to support the MANA team as they advance their internal pipeline for the treatment of AML and select solid tumors, and expand the potential of EDIFY through strategic partnerships focused on new target antigens and cancer types.”

An international leader in the immunotherapy field, Dr. Bollard was an early believer in the potential of immune cell therapies to dramatically improve the treatment of patients with cancer and patients with life-threatening viral infections. Recently, she and her team at the Children’s National Center for Cancer and Immunology Research published findings in Blood showing T-cells taken from the blood of people who recovered from a COVID-19 infection can be successfully multiplied in the lab and maintain the ability to effectively target proteins that are key to the virus’s function.

“Over the past decade we have seen tremendous progress in cancer research and treatment and are beginning to unlock the potential of cell therapy for a variety of tumor types,” said Dr. Bollard. “The human proof-of-concept trials conducted by my team and colleagues showed potential for a nonengineered approach to educating T-cells to attack multiple tumor antigens, which MANA is expanding even further through refinement of the manufacturing process for an allogeneic product and application to a broader set of antigens in a variety of clinical indications and settings.”

Read more about how the Series A funding will enable rapid progress with MANA’s programs.

Catherine Bollard

Catherine Bollard, M.D., M.B.Ch.B., named next editor-in-chief of Blood Advances

Catherine Bollard

“As editor-in-chief, I will aim to capture new developments in the hematology field, including immunology, immunotherapy, cell therapy, gene and cell therapy and transplant,” said Dr. Bollard.

The American Society of Hematology (ASH) has selected Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research at the Children’s National Research Institute as the next editor-in-chief of its journal Blood Advances.

Blood Advances is a peer-reviewed online open access journal published by ASH that covers the latest developments in basic, translational and clinical hematology. Dr. Bollard’s term as editor-in-chief will begin in September 2021. She was selected by the ASH Executive Committee after a competitive international search.

Blood Advances has a broad presence, a large and growing number of manuscript submissions, and an engaged readership,” said Dr. Bollard. “I am so looking forward to continuing to build and strengthen the journal as its editor-in-chief.”

Since its launch in 2016, Blood Advances has taken advantage of its digital, open-access publication model to emphasize multimedia and a rapid, continuous publication format. Under the leadership of founding editor-in-chief Robert Negrin, M.D., of Stanford University, the peer-reviewed journal has pioneered new means of interactive, collaborative discussion and achieved an impact factor of 4.910.

“As editor-in-chief, I will aim to capture new developments in the hematology field, including immunology, immunotherapy, cell therapy, gene and cell therapy and transplant,” said Dr. Bollard. Her vision for the future of Blood Advances also includes further expansion of the journal’s global reach as well as continued efforts to recruit an editorial team representing geographic, ethnic and gender diversity.

“We have tremendous opportunities for growth, and I think in order to grow we must consider what readers want, how we can provide quality service for authors and reviewers, and how we can establish our own identity as a journal,” she said.

Dr. Bollard is a hematologist whose research interests include developing cell and gene therapies for patients with cancer and underlying immune deficiencies. Recognized as a national and international leader in the bone marrow transplant, immunology and immunotherapy space, Dr. Bollard has an expansive understanding of cancer, immune deficiencies and viral infections in pediatric and adult patients.

In her role as director of the Center for Cancer and Immunology Research at Children’s National Hospital, she works to establish clinical and research programs focused on developing and bringing novel cell therapies from bench to bedside.

Blood Advances is an important hub for hypothesis-generating papers, pilot studies and case reports, commentaries and other educational materials of interest to hematologists everywhere,” said ASH President Stephanie Lee, M.D., of Fred Hutchinson Cancer Research Center. “I am confident that Dr. Bollard will continue leveraging the journal’s unique digital platform to maintain its tradition of excellence as she executes her vision as editor-in-chief. I look forward to seeing how the journal evolves under her leadership.”

coronavirus

T-cells show promise to protect vulnerable patients from COVID-19 infection

coronavirus

Children’s National Hospital immunotherapy experts have found that T-cells taken from the blood of people who recovered from a COVID-19 infection can be successfully multiplied in the lab and maintain the ability to effectively target proteins that are key to the virus’s function.

Children’s National Hospital immunotherapy experts have found that T-cells taken from the blood of people who recovered from a COVID-19 infection can be successfully multiplied in the lab and maintain the ability to effectively target proteins that are key to the virus’s function. Their findings were published Oct. 26, 2020, in Blood.

“We found that many people who recover from COVID-19 have T-cells that recognize and target viral proteins of SARS-CoV-2, giving them immunity from the virus because those T-cells are primed to fight it,” says Michael Keller, M.D., a pediatric immunology specialist at Children’s National Hospital, who led the study. “This suggests that adoptive immunotherapy using convalescent T-cells to target these regions of the virus may be an effective way to protect vulnerable people, especially those with compromised immune systems due to cancer therapy or transplantation.”

Based on evidence from previous phase 1 clinical trials using virus-targeting T-cells “trained” to target viruses such as Epstein-Barr virus, the researchers in the Cellular Therapy Program at Children’s National hypothesized that the expanded group of COVID-19 virus-targeting T-cells could be infused into immunocompromised patients, helping them build an immune response before exposure to the virus and therefore protecting the patient from a serious or life-threatening infection.

“We know that patients who have immune deficiencies as a result of pre-existing conditions or following bone marrow or solid organ transplant are extremely vulnerable to viruses like SARS-CoV-2,” says Catherine Bollard, M.D., M.B.Ch.B., senior author of the study and director of the novel cell therapies program and the Center for Cancer and Immunology Research at Children’s National. “We’ve seen that these patients are unable to easily clear the virus on their own, and that can prevent or delay needed treatments to fight cancer or other diseases. This approach could serve as a viable option to protect or treat them, especially since their underlying conditions may make vaccines for SARS-CoV-2 unsafe or ineffective.”

The T-cells were predominantly grown from the peripheral blood of donors who were seropositive for SARS-CoV-2. The study also identified that SARS-CoV-2 directed T-cells have adapted to predominantly target specific parts of the viral proteins found on the cell membrane, revealing new ways that the immune system responds to COVID-19 infection.

Current vaccine research focuses on specific proteins found mainly on the “spikes” of the coronavirus SARS-CoV-2. The finding that T-cells are successfully targeting a membrane protein instead may add another avenue for vaccine developers to explore when creating new therapeutics to protect against the virus.

“This work provides a powerful example of how both scientific advances and collaborative relationships developed in response to a particular challenge can have broad and unexpected impacts on other areas of human health,” says Brad Jones, Ph.D., an associate professor of immunology in medicine in the Division of Infectious Diseases at Weill Cornell Medicine and co-author on the study, whose lab focuses on HIV cure research. “I began working with Dr. Bollard’s team several years ago out of our shared interest in translating her T-cell therapy approaches to HIV. This put us in a position to quickly team up to help develop the approach for COVID-19.”

The Cellular Therapy Program is now seeking approval from the U.S. Food and Drug Administration for a phase 1 trial that will track safety and effectiveness of using COVID-19-specific T-cells to boost the immune response in patients with compromised immune systems, particularly for patients after bone marrow transplant.