Posts

inside a GMP lab

Cell therapy manufacturing process ramps up to meet increased demand for T-cell products

inside a GMP lab

The new laboratory space includes floor-to-ceiling windows and brand new, state-of-the-art GMP lab suites.

Since Children’s National Hospital began its pediatric cellular therapy program in 2013, it has received more than $5 million in annual funding, treated over 200 patients, manufactured more than 400 cell-based products and supported over 25 clinical trials.

One of the in-house programs supporting this work is the Good Manufacturing Practices (GMP) facility. Patrick Hanley, Ph.D., chief and director of the cellular therapy program at Children’s National and leader of the GMP laboratory, explained that the first patient received a dose of less than 10 million cells in May 2014. Fast forward to now, the lab uses liters of media, automated bioreactors and multiple staff, making upwards of 12 billion cells per run — a growing production scale that enables many different options. Using cells as an off-the-shelf technology is one of those.

The cell therapy program exports these off-the-shelf products beyond Children’s National to make them available for kids across the country. Catherine Bollard, M.D., MBChB., director of the Center for Cancer and Immunology Research at Children’s National, and Michael Keller, M.D., director of the Translational Research Laboratory in the Program for Cell Enhancement and Technologies for Immunotherapy (CETI) at Children’s National, each led clinical trials with hospitals across the United States, including the first-ever cellular therapy clinical trial run through the Children’s Oncology Group.

To meet the high demand for cell therapy trials at Children’s National, the GMP lab moved to a larger space, doubling the team’s capacity to produce alternative treatment options for patients and facilitate the lab’s ability to support clinical divisions throughout the hospital.

The GMP lab is exploring how to make cell products more consistent — regardless of patient-to-patient variability. They are also hoping to delineate the characteristics that ensure quality cell products, educate other facilities, enhance the overall knowledge of how to safely manufacture these products and make these technologies more available and affordable to the patients who need them.

Among Hanley’s many goals for the GMP lab, one is to improve the transition from when an investigator discovers a product in the translational research lab to when it is manufactured for patients.

“To improve this transition, we have started a process development team that will learn the process alongside the research team, replicate it, and then train the staff who manufacture the product for patients,” said Hanley. “In addition to providing a better training opportunity for the manufacturing staff, it allows us to work with the investigators earlier on to identify changes that will need to be made to translate the products to patients, ultimately resulting in safer, more potent immunotherapy products.”

While cell therapy has seen increased interest in the last 10 years, there are still some challenges in the field, given that it is not as mature as other scientific areas. The lack of trained staff, scalability of cell and gene therapy, the variability between patients and products, delayed FDA approvals and rejection of licensing applications for cell therapy products — are barriers that scientists and companies often face.

“Each of us has a unique immune system, and that means that if we try and make a product from it, it will not behave like any other, so the number of cells, the potency the alloreactivity — it is all different,” said Hanley. “T-cells are a living drug that expand in the body at different rates, are composed of different types of T-cells, and release different cytokines and in different amounts.”

This all ties back to the process development and basic research. The better researchers can characterize the products under development, the more they will know about how the products work and the easier it will be to tie these products to patient outcomes.

Meet some of the Children’s National multidisciplinary experts who join forces to lead the cell therapy space.

Jay Tanna, M.S., quality assurance manager, has extensive experience with drug development at Children’s National as well as Sloan Kettering, another premier cell therapy institution. He has a Masters in Pharmaceutical Manufacturing and a Regulatory Affairs Certification (RAC) in U.S. FDA drugs and biologics regulations from the Regulatory Affairs Professional Society (RAPS).

Kathryn Bushnell, M.T. (ASCP), the cell therapy lab manager, oversees Stem Cell Processing. She has 20 years of experience with hematopoietic progenitor cells and cellular therapy, starting her career as a medical technologist at MD Anderson Cancer Center.

Nan Zhang, Ph.D., assistant director of manufacturing at Children’s National, has worked at Wake Forest and the National Institutes of Health developing various cellular therapies. Zhang chaired the cell processing session at the annual meeting of the American Society of Hematology in 2020.

Abeer Shibli, M.T., is a specialist in the cellular therapy laboratory with extensive experience in the processing of cellular therapy products. She has over 10 years of experience as a medical technologist, is specialized in blood banking and transfusion medicine and is one of the senior technologists in the lab.

Chase McCann, M.S.P.H., Ph.D., is the cell therapy lab lead for manufacturing at Children’s National Hospital. He recently completed his Ph.D. training in Immunology and Microbial Pathogenesis at Weill Cornell Medicine in New York. Much of his graduate research focused on developing and enhancing cellular therapies for HIV while identifying common mechanisms of escape, shared by both HIV and various cancers, which limit the efficacy of current cell therapies. Previously, McCann worked as the laboratory coordinator for the HIV Prevention Trials Network, and now oversees the manufacturing of many cell therapies supporting the many clinical trials currently underway at Children’s National.

Anushree Datar, M.S., the cell therapy lab lead for immune testing and characterization, oversees the release testing of products manufactured in the GMP for safety and function before they can be infused in patients. She also leads a part of the research team investigating the improvement in immune function after cell infusion.

Dr. Bollard is also the director of the Program for Cell Enhancement and Technologies for Immunotherapy and president of the Foundation for the Accreditation for Cellular Therapy (FACT). Additionally, in 2019, she became a member of the Frederick National Laboratory Advisory Committee (FNLAC) for the NIH and an ad hoc member of the Pediatric Oncologic Drugs Advisory Committee (ODAC) for the FDA. She has been an associate editor for the journal Blood since 2014 and in 2020 was appointed editor-in-chief of Blood Advances (starting Fall 2021). Dr. Bollard has 21 years of cell therapy experience as a physician, sponsor and principal investigator.

Dr. Hanley serves as the commissioning editor of the peer-reviewed journal Cytotherapy, as the vice-president-elect (North America) of the International Society of Cell and Gene Therapy (ISCT), and board of directors member at FACT, which provides him visibility into various cell and gene therapies, manufacturing approaches, and other intangibles that make Children’s National facility one of the leaders in the field.

To find the full research program list and their experts, click here.

GMP group photo

Lab members celebrate the expansion of the GMP Laboratory.

illustration of brain with stem cells

Innovative phase 1 trial to protect brains of infants with CHD during and after surgery

A novel phase 1 trial looking at how best to optimize brain development of babies with congenital heart disease (CHD) is currently underway at Children’s National Hospital.

Children with CHD sometimes demonstrate delay in the development of cognitive and motor skills. This can be a result of multiple factors including altered prenatal oxygen delivery, brain blood flow and genetic factors associated with surgery including exposure to cardiopulmonary bypass, also known as the heart lung machine.

This phase 1 trial is the first to deliver mesenchymal stromal cells from bone marrow manufactured in a lab (BM-MSC) into infants already undergoing cardiac surgery via cardiopulmonary bypass. The hypothesis is that by directly infusing the MSCs into the blood flow to the brain, more MSCs quickly and efficiently reach the subventricular zone and other areas of the brain that are prone to inflammation. The trial is open to eligible patients ages newborn to six months of age.


Learn more in this overview video.

The trial is part of a $2.5 million, three-year grant from the National Institutes of Health (NIH) led by Richard Jonas, M.D.Catherine Bollard, M.B.Ch.B., M.D., and Nobuyuki Ishibashi, M.D.. The project involves collaboration between the Prenatal Cardiology program of Children’s National Heart Institute, the Center for Cancer and Immunology Research, the Center for Neuroscience Research and the Sheikh Zayed Institute for Pediatric Surgical Innovation.

“NIH supported studies in our laboratory have shown that MSC therapy may be extremely helpful in improving brain development in animal models after cardiac surgery,” says Dr. Ishibashi. “MSC infusion can help reduce inflammation including prolonged microglia activation that can occur during surgery that involves the heart lung machine.”

Staff from the Cellular Therapy Laboratory, led by director Patrick Hanley, Ph.D., manufactured the BM-MSC at the Center for Cancer and Immunology Research, led by Dr. Bollard.

The phase 1 safety study will set the stage for a phase 2 effectiveness trial of this highly innovative MSC treatment aimed at reducing brain damage, minimizing neurodevelopmental disabilities and improving the postoperative course in children with CHD. The resulting improvement in developmental outcome and lessened behavioral impairment will be of enormous benefit to individuals with CHD.

For more information about this new treatment, contact the clinical research team: Gil Wernovsky, M.D., Shriprasad Deshpande, M.D., Maria Fortiz.

Hodgkin lymphoma cells

Clinical Trial Spotlight: Can Nivolumab make cellular therapy more effective for treating relapsed lymphomas?

Hodgkin lymphoma cells

Each year, about 9,000 new patients are diagnosed with Hodgkin lymphoma, 10-15% of them children.

Each year, about 9,000 new patients are diagnosed with Hodgkin lymphoma, 10-15% of them children. Despite a relatively high cure rate for children with Hodgkin lymphoma, there are many debilitating long-term side effects of the treatments currently used. Additionally, 15-20% of children have a relapse and only half of them experience a long-term cure. Diffuse large B cell Lymphomas are another type of aggressive lymphoma that are difficult to cure, especially when they do not respond to upfront chemotherapy (refractory). Patients who experience relapse have to undergo more intensive chemotherapy followed by autologous stem cell transplantation and yet often times their lymphoma comes back.

Physicians at Children’s National Hospital, in partnership with the Huntsman Cancer Institute at the University of Utah School of Medicine, are enrolling patients in a clinical trial to test the safety of administering PD-1 inhibitor Nivolumab given prior to and following the infusions of the patients’ own TAA-T cells which have been trained to target tumor cells in the laboratory. Nivolumab is currently approved by the FDA for relapsed Hodgkin lymphoma. Nivolumab acts by unleashing the brakes put on by the lymphoma cells, and by doing so, Nivolumab allows the immune system to overcome the tumor’s escape mechanism.

“We believe that if our T cells are deemed safe when given in combination with already approved drugs, we may be able to impact multiple lives and reduce long-term toxicities from conventional chemotherapies,” said Hema Dave, M.D., an oncologist at Children’s National. “We’re hopeful that combination immunotherapies will produce more durable responses than when immunotherapies are given alone as a single agent and, additionally, that they will reduce the use of cytotoxic chemotherapy.”

The investigators will collect blood from the patients to isolate peripheral blood mononuclear cells. They will then make special cells called dendritic cells to stimulate the T cells. Then they will add special mixtures of tumor proteins WT1, PRAME and Survivin and provide a cytokine milieu favorable to T cell expansion/activation, inducing selective expansion of T cells targeted to kill tumor cells. This process trains the T cells to recognize the tumor proteins and become specialized TAA-T cells. The cells will be grown and frozen until ready for use. While the T cells are growing, the patients will be given Nivolumab.

“We’re really trying to test if priming the patients with Nivolumab will make their T cells more effective when they get infused,” says Dr. Dave. “The Nivolumab will help prepare the immune system. Then, when we infuse the T cells, our hope is that the environment is primed for the T cells to expand, grow and work to attack the cancer. If we can prime the immune system and make it more conducive for the T cells, then maybe they will have a better chance to get to the lymphoma cells and thus have a more sustained response.”

Patients will then receive two infusions of the TAA-T cells and be monitored for side effects. The anticipated enrollment is 18 patients over the next 2-3 years. If there is a positive response in patients enrolled in this safety trial, it could expand to test for efficacy of the novel combination immunotherapy.

Phase 1 Study Utilizing Tumor Associated Antigen Specific T Cells (TAA-T) with PD1 Inhibitor Nivolumab for Relapsed/Refractory Lymphoma

  • PI: Hema Dave, M.D.
  • Status: Recruiting

For more information about this trial, contact:

Hema Dave, M.D.
202-476-6397
hkdave@childrensnational.org

Fahmida Hoq, MBBS, MS
202-476-3634
fhoq@childrensnational.org

Click here to view Open Phase 1 and 2 Cancer Clinical Trials at Children’s National.

The Children’s National Center for Cancer and Blood Disorders is committed to providing the best care for pediatric patients. Our experts play an active role in innovative clinical trials to advance pediatric cancer care. We offer access to novel trials and therapies, some of which are only available here at Children’s National. With research interests covering nearly every aspect of pediatric cancer care, our work is making great advancements in childhood cancer.

Combined FACT accreditation related to cellular immunotherapy spotlights Children’s ongoing commitment to revolutionary cancer therapies

DNA strand and Cancer Cell

As new immunotherapy treatments are starting to hit the market, care-delivery must adapt so that facilities are prepared to deliver these novel treatments to patients. Children’s National is proud to announce that it became the first pediatric medical institution in the United States to receive accreditations for both immune effector cells and more than minimal manipulation from the Foundation for the Accreditation of Cellular Therapy (FACT). Considered the threshold for excellence in cellular therapy, FACT establishes standards for high-quality medical and laboratory practice in the field.

“We are proud to receive these critically important seals of approval,” said David Jacobsohn, M.D., ScM, division chief of the Division of Blood and Marrow Transplantation at Children’s National. “Our patients are our highest priority and having these accreditations only further demonstrates our commitment to providing the most innovative care.”

The first new designation, FACT Accreditation for Immune Effector Cells, certifies that Children’s National is able to safely administer cutting-edge cellular therapies and monitor and report patient outcomes. The designation applies to CAR-T cells and therapeutic vaccines, among other therapies.

“We continuously set high standards for cellular therapy within the walls of Children’s National, and we are thrilled to be recognized for our leadership in this field,” said Catherine Bollard, M.D., M.B.Ch.B., director of the Center for Cancer and Immunology Research within the Children’s Research Institute. “Cell therapies represent the next generation of cancer treatment, and we are excited to continue our journey in revolutionizing patient care.”

Children’s National also received FACT Accreditation for More than Minimal Manipulation,

a designation that is unique to only a few pediatric institutions in the United States. This accreditation certifies that Children’s National is prepared to safely manufacture its own cellular therapies.

“Being accredited for More than Minimal Manipulation is a tremendous achievement for us as a stand-alone pediatric institution; it exemplifies our ability to manufacture our own innovative cellular therapy products for patients in need,” said Patrick Hanley, Ph.D., director of the Cellular Therapy Laboratory where the cells are manufactured for clinical use. “These two accreditations allow Children’s National to serve as a complex immunotherapy center that is capable of providing immunotherapies and gene therapies from external groups and companies.”