Posts

NPosnack-Heart-image

NIH funding to improve devices and safeguard cardiovascular health

Nearly 15 million blood transfusions are performed each year in the U.S., and pediatric patients alone receive roughly 425,000 transfused units. Endocrine-disrupting chemicals, such as bisphenol A and di-2-ethylhexyl-phthalate (DEHP), can leach from some plastic devices used in such transfusions. However, it remains unclear how many complications following a transfusion can be attributed to the interplay between local and systemic reactions to these chemical contaminants.

NPosnack-Heart-image

Top: Live, excised heart that is being perfused with a crystalloid buffer via the aorta. The heart is stained with a voltage-sensitive fluorescent dye, which is excited by an LED light source. Bottom, right: Cardiac action potentials are optically mapped across the epicardial surface in real-time by monitoring changes in the fluorescence signal that are proportional to changes in transmembrane voltage. Bottom, left: An activation map (middle) depicts the speed of electrical conduction across the heart surface. Credit: Rafael Jaimes, Ph.D.; Luther Swift, Ph.D.; Manelle Ramadan, B.S.; Bryan Siegel, M.D.; James Hiebert, B.S., all of Children’s National Health System; and Daniel McInerney, student at The George Washington University.

The National Heart, Lung and Blood Institute within the National Institutes of Health has awarded a $3.4 million, five-year grant to Nikki Gillum Posnack, Ph.D., assistant professor at the Children’s National Heart Institute within the Sheikh Zayed Institute for Pediatric Surgical Innovation (SZI) at Children’s National Health System, to answer that question and to provide insights that could accelerate development of safer biomaterials.

According to the Food and Drug Administration, patients who are undergoing IV therapy, blood transfusion, cardiopulmonary bypass or extracorporeal membrane oxygenation or who receive nutrition through feeding support tubes have the potential to be exposed to DEHP.

Posnack led a recent study that found that an experimental model exposed to DEHP experienced altered autonomic regulation, heart rate variability and cardiovascular reactivity and reported the findings Nov. 6, 2017, in the American Journal of Physiology. The pre-clinical model study is the first to show such an association between phthalate chemicals used in everyday medical devices like IV tubing and cardiovascular health.

In the follow-on research, Posnack and colleagues will:

  • Use in vivo and whole heart models to define the extent to which biomaterial leaching and chemical exposure alters cardiovascular and autonomic function in experimental models
  • Determine whether biocompatibility and incidental chemical exposure are linked to cardiovascular and autonomic abnormalities experienced by pediatric patients post transfusion
  • Compare and contrast alternative biomaterials, chemicals and manufacturing techniques to identify safer transfusion device options.

“Ultimately, we hope to strengthen the evidence base used to inform decisions by the scientific, medical and regulatory communities about whether chemical additives that have endocrine-disrupting properties should be used to manufacture medical devices,” Posnack says. “Our findings also will highlight incentives that could accelerate development of alternative biomaterials, additives and fabrication techniques to improve safety for patients undergoing transfusion.”

Blood Transfusion

Hydroxycarbamide effective in sickle cell stroke prevention

Blood Transfusion

Hydroxycarbamide treatment is on par with blood transfusions for preventing stroke in patients with sickle cell anemia.

What’s known

Strokes are common and devastating complications for patients with sickle cell anemia, often leading to severe and lifelong motor and neurocognitive problems for people with this congenital blood disorder. Results of a clinical trial published in 1998 showed that having regular blood transfusions could reduce the risk of having a first stroke by 90 percent in children with sickle cell anemia. Since then, doctors have employed this prophylactic treatment widely. However, blood transfusions can be painful, inconvenient and carry substantial risks themselves — including the potential of blood-borne infections, iron overload and immune-related reactions to blood products. Finding a way to reduce stroke risk without over-relying on blood transfusions could substantially benefit patients with sickle cell anemia.

What’s new

A team of researchers, including Naomi L.C. Luban, M.D., a Children’s National Health System hematologist and laboratory medicine specialist, tested transfusions against a drug treatment called hydroxycarbamide in a clinical trial to see if the pharmaceutical intervention could reduce strokes at least as well as transfusions. The clinical trial, known as “TCD With Transfusions Changing to Hydroxyurea (TWiTCH),” assigned 60 patients with sickle cell anemia who had abnormally high transcranial Doppler (TCD) flow velocities—a measure of blood flow in the brain that suggests elevated risk of stroke—to receive hydroxycarbamide instead of transfusions. The research team compared the outcomes for these patients with 61 other patients who received standard prophylactic transfusions. Over the 24-month study period, neither group experienced any strokes, although three transient ischemic attacks (a temporary blockage of blood flow in the brain) occurred in each group. These comparable findings suggest that hydroxycarbamide treatment, also known as hydroxyurea, is on par with transfusions for preventing strokes in patients with sickle cell anemia.

Questions for future research

Q: Does hydroxycarbamide offer a long-term way for patients with sickle cell anemia to avoid transfusions?
Q: Could hydroxycarbamide help patients with sickle cell anemia who already have suffered a stroke or who have had severe problems with blood vessels in their brains that impair blood flow?
Q: Which other treatments can help patients avoid the myriad complications that accompany sickle cell anemia?

Source: Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anemia—TCD With Transfusions Changing to Hydroxyurea (TWiTCH): A multicentre, open-label, phase 3, non-inferiority trial.” Ware, R.E. B. R. Davis, W. H. Schultz, R.C. Brown, B. Aygun, S. Sarnaik, I. Odame, B. Fuh, A. George, W. Owen, L. Luchtman-Jones, Z.R. Rogers, L. Hilliard, C. Gauger, C. Piccone, M.T. Lee, J.L. Kwiatkowski, S. Jackson, S.T. Miller, C. Roberts, M.M. Heeney, T.A. Kalfa, S. Nelson, H. Imran, K. Nottage, O. Alvarez, M. Rhodes, A.A. Thompson, J.A. Rothman, K.J. Helton, D. Roberts, J. Coleman, M.J. Bonner, A. Kutlar, N. Patel, J. Wood, L. Piller, P. Wei, J. Luden, N.A. Mortier, S.E. Stuber, N. L. C. Luban, A.R. Cohen, S. Pressel and R.J. Adams. Published by The Lancet on Feb. 13, 2016.