Posts

BPA analogues may be less likely to disrupt heart rhythm

Some chemical alternatives to plastic bisphenol-a (BPA), which is still commonly used in medical settings such as operating rooms and intensive care units, may be less disruptive to heart electrical function than BPA,

A poster at the AHA Scientific Sessions suggests bisphenol-s (BPS) and bisphenol-f (BPF) may have less impact on heart function than bisphenol-a (BPA).

Some chemical alternatives to plastic bisphenol-a (BPA), which is still commonly used in medical settings such as operating rooms and intensive care units, may be less disruptive to heart electrical function than BPA, according to a pre-clinical study that explored how the structural analogues bisphenol-s (BPS) and bisphenol-f (BPF) interact with the chemical and electrical functions of heart cells.

The findings suggest that in terms of toxicity for heart function, these chemicals that are similar in structure to BPA may actually be safer for medically fragile heart cells, such as those in children with congenital heart disease. Previous research has found a high likelihood that BPA exposure may impact the heart’s electrical conductivity and disrupt heart rhythm, and patients are often exposed to the plastic via clinical equipment found in intensive care and in the operating room.

“There are still many questions that need to be answered about the safety and efficacy of using chemicals that look and act like BPA in medical settings, especially in terms of their potential contribution to endocrine disruption,” says Nikki Gillum Posnack, Ph.D., the poster’s senior author and a principal investigator in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital. “What we can say is that, in this initial pre-clinical investigation, it appears that these structural analogues have less of an impact on the electrical activity within the heart and therefore, may be less likely to contribute to dysrhythmias.”

Future studies will seek to quantify the risk that these alternative chemicals pose in vulnerable populations, including pediatric cardiology and cardiac surgery patients. Since pediatric patients’ hearts are still growing and developing, the interactions may be different than what was seen in this pilot study.

Learn more the impacts of exposure to plastics such as bisphenol-A and plasticizers such as DEHP and MEHP that are commonly used in medical devices:

###

Bisphenol-a Analogues May Be Safer Alternatives For Plastic Medical Products
Rafael Jaimes, Damon McCullough, Luther M Swift, Marissa Reilly, Morgan Burke, Jiansong Sheng, Javier Saiz, Nikki G Posnack
Poster Presentation by senior author Nikki G Posnack
CH.APS.01 – Translational Research in Congenital Heart Disease
AHA Scientific Sessions
November 16, 2019
1:30 p.m. – 2:00 p.m.

Nikki Gillum Posnack

Examining BPA’s impact on developing heart cells

Nikki Gillum Posnack

“We know that once this chemical enters the body, it can be bioactive and therefore can influence how heart cells function,” says Nikki Gillum Posnack, Ph.D. “This is the first study to look at the impact BPA exposure can have on heart cells that are still developing.”

More than 8 million pounds of bisphenol A (BPA), a common chemical used in manufacturing plastics, is produced each year for consumer goods and medical products. This endocrine disruptor reaches 90 percent of the population, and excessive exposure to BPA, e.g., plastic bottles, cash register receipts, and even deodorant, is associated with adverse cardiovascular events that range from heart arrhythmias and angina to atherosclerosis, the leading cause of death in the U.S.

To examine the impact BPA could have in children, researchers with Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation evaluated the short-term risks of BPA exposure in a preclinical setting. This experimental research finds developing heart cells respond to short-term BPA exposure with slowed heart rates, irregular heart rhythms and calcium instabilities.

While more research is needed to provide clinical recommendations, this preclinical model paves the way for future study designs to see if young patients exposed to BPA from medical devices or surgical procedures have adverse cardiac events and altered cardiac function.

“Existing research explores the impact endocrine disruptors, specifically BPA, have on adults and their cardiovascular and kidney function,” notes Nikki Gillum Posnack, Ph.D., a study author and assistant professor at Children’s National and The George Washington University. “We know that once this chemical enters the body, it can be bioactive and therefore can influence how heart cells function. This is the first study to look at the impact BPA exposure can have on heart cells that are still developing.”

The significance of this research is that plastics have revolutionized the way clinicians and surgeons treat young patients, especially patients with compromised immune or cardiac function.

Implications of Dr. Posnack’s future research may incentivize the development of alternative products used by medical device manufacturers and encourage the research community to study the impact of plastics on sensitive patient populations.

“It’s too early to tell how this research will impact the development of medical devices and equipment used in intensive care settings,” notes Dr. Posnack. “We do not want to interfere with clinical treatments, but, as scientists, we are curious about how medical products and materials can be improved. We are extending this research right now by examining the impact of short-term BPA exposure on human heart cells, which are developed from stem cells.”

This research, which appears as an online advance in Nature’s Scientific Reports, was supported by the National Institutes of Health under awards R00ES023477, RO1HL139472 and UL1TR000075, Children’s Research Institute and the Children’s National Heart Institute. NVIDIA Corporation provided GPUs, computational devices, for this study.