Posts

Illustration of brain hemispheres

Children use both brain hemispheres to understand language

Illustration of brain hemispheres

New research finds young children process language in both hemispheres of the brain, which could help compensation after a neural injury. This is unlike adults who process most language tasks in one side (usually the left) of their brain’s two hemispheres. It suggests a possible reason why children often seem to recover from brain injury more easily than adults.

New research finds young children process language in both hemispheres of the brain, which could help compensate after a neural injury. The study, published Sept. 8, 2020, in PNAS, says this is unlike adults who process most language tasks in one side (usually the left) of their brain’s two hemispheres. It suggests a possible reason why children often seem to recover from brain injury more easily than adults.

We talked with researcher William D. Gaillard, M.D., chief of the Divisions of Child Neurology, Epilepsy and Neurophysiology at Children’s National Hospital, to discuss the importance of this work.

Q: Tell us a little bit about this study.

A: This is a study we did with our colleagues at Georgetown University Medical Center, using fMRI to map brain regions that are used to process language across development. What we found was that younger children have more bilateral “activation” in language processing regions, the traditional left and homotopic regions in the right. With aging there is consolidation that becomes more left lateralized. This process is most clearly seen in the frontal brain regions, called Broca’s area, where the right activation diminishes over age

Q: Why are these findings important?

A: It’s important because this work provides evidence for how cognitive systems, and the neural networks that underlie them, become consolidated and lateralized over time during development. It provides insights into principles of the development of cognitive systems.

The timeline for lateralization of language systems means that the cognitive systems that sustain language are “plastic” – that is the right hemisphere can sustain language functions in the setting of injury to the left hemisphere until around 10 years of age.

Q: What excites you about this work?

A: This is part of a larger collaborative effort that is mapping out the consolidation of cognitive systems across development (language, visual spatial, memory and working memory). This work will help us to understand the limits of brain plasticity in the setting of injury caused by stroke or epilepsy, which could have benefits down the road to helping patients recover from these types of events.

Q: How is Children’s National leading the ongoing discovery in this space?

A: It is a true team effort. We are working with colleagues at Georgetown University Medical Center, MedStar National Rehabilitation Network and Johns Hopkins Medicine. Team members come from diverse backgrounds and scientific skills. We are one of the leading groups using advanced functional imaging to investigate brain development of critical cognitive systems and their response to brain injury.

You can find the full study published in PNAS. Learn more about the Children’s National Research Institute Center for Neuroscience Research.

 

Maureen Monaghan

Using text messages and telemedicine to improve diabetes self-management

Maureen Monaghan

Maureen Monaghan, Ph.D., C.D.E., clinical psychologist and certified diabetes educator in the Childhood and Adolescent Diabetes Program at Children’s National Health System, awarded nearly $1.6 million grant from American Diabetes Association.

Adolescents and young adults ages 17-22 with Type 1 diabetes are at high risk for negative health outcomes. If fact, some studies show that less than 20 percent of patients in this population meet targets for glycemic control, and visits to the Emergency Department for acute complications like diabetic ketoacidosis peak around the same age.

The American Diabetes Association (ADA) awarded Maureen Monaghan, Ph.D., C.D.E., clinical psychologist and certified diabetes educator in the Childhood and Adolescent Diabetes Program at Children’s National Health System, nearly $1.6 million to evaluate an innovative behavioral intervention to improve patient-provider communication, teach and help patients maintain self-care and self-advocacy skills and ultimately prepare young adults for transition into adult diabetes care, limiting the negative adverse outcomes that are commonly seen in adulthood.

Dr. Monaghan is the first psychologist funded through the ADA’s Pathway to Stop Diabetes program, which awards six annual research grants designed to spur breakthroughs in fundamental diabetes science, technology, diabetes care and potential cures. Dr. Monaghan received the Accelerator Award, given to diabetes researchers early in their careers, which will assist her in leading a behavioral science project titled, “Improving Health Communication During the Transition from Pediatric to Adult Diabetes Care.”

“Behavior is such a key component in diabetes care, and it’s wonderful that the American Diabetes Association is invested in promoting healthy behaviors,” says Dr. Monaghan. “I’m excited to address psychosocial complications of diabetes and take a closer look at how supporting positive health behavior during adolescence and young adulthood can lead to a reduction in medical complications down the road.”

During the five year study, Dr. Monaghan will recruit patients ages 17-22 and follow their care at Children’s National through their first visit with an adult endocrinologist. Her team will assess participants’ ability to communicate with providers, including their willingness to disclose diabetes-related concerns, share potentially risky behaviors like drinking alcohol and take proactive steps to monitor and regularly review glucose data.

“The period of transition from pediatric to adult diabetes care represents a particularly risky time. Patients are going through major life changes, such as starting new jobs, attending college, moving out of their parents’ homes and ultimately managing care more independently,” says Dr. Monaghan. “Behavioral intervention can be effective at any age, but we are hopeful that we can substantially help youth during this time of transition when they are losing many of their safety nets.”

Study leaders will help participants download glucose device management tools onto their smartphones and explain how to upload information from patients’ diabetes devices into the system. Participants will then learn how to review the data and quickly spot issues for intervention or follow-up with their health care provider.

Patients also will participate in behavioral telemedicine visits from the convenience of their own homes, and receive text messages giving them reminders about self-care and educational information, such as “Going out with your friends tonight? Make sure you check your glucose level before you drive.”

At the study’s conclusion, Dr. Monaghan anticipates seeing improvements in psychosocial indicators, mood and transition readiness, as well as improved diabetes self-management and engagement in adult medicine.