Fetal Medicine

Roberta DeBiasi

Panel: Significant Zika risks linger for pregnant women and developing fetuses in US

Roberta DeBiasi

The threat from Zika “is not over. It is just beginning for the families who are affected by this,” says Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases and co-director of the Congenital Zika Virus Program at Children’s National Health System.

The Zika virus epidemic may have fallen off the radar for many media outlets, but significant risks continue to linger for pregnant women and developing fetuses, a panel of experts told staff working for U.S. Congressional leaders.

“The threat of this virus is real, and the threat continues,” Margaret Honein, Ph.D., M.P.H., of the Centers for Disease Control and Prevention’s (CDC) pregnancy and birth defects task force, said during the July 13 briefing held in the Russell Senate Office Building.

Dr. Honein told about 100 attendees that more than 200 Zika-affected babies have been born in the United States suffering from serious birth defects, such as rigid joints, inconsolable distress that causes them to cry continuously and difficulties swallowing. Some of these infants experience seizures that cause further brain damage.

Predicting what Zika will do next in the United States is very difficult, Dr. Honein said, adding that local outbreaks could occur “at any time.” A map she displayed showed Zika’s impact in shades of blue, with Zika infections documented in nearly every state and the highest number of infections – and deepest shade of blue­ – for California, Florida and Texas.

The threat from Zika “is not over. It is just beginning for the families who are affected by this,” agreed Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases and co-director of the Congenital Zika Virus Program at Children’s National Health System.

Since Children’s National launched its Zika program in May 2016, the multidisciplinary team has consulted on 65 mother-fetus/infant pairs, Dr. DeBiasi said. Because in utero Zika infection can result in a wide range of side effects, the Children’s team includes pediatric infectious diseases experts, fetal/neonatal neurologists to consult on seizures, audiologists to assess hearing, physical therapists and orthopaedists to contend with limb contractures, pulmonologists to relieve breathing problems and ophthalmologists to diagnose and treat vision disorders – among other specialists.

“You really need a program that has all of these areas of expertise available for a family,” Dr. DeBiasi told attendees. “It is not possible for a family to organize 27 different appointments if you have a child with these needs.”

Children’s Zika experts also collaborate with researchers in Colombia to gauge the ability of magnetic resonance imaging to produce earlier Zika diagnoses, to assess the role of viral load as biomarkers and to document Zika’s long-term impact on children’s neurodevelopment. The Colombia study has enrolled an additional 85 women/infant pairs.

In one presentation slide, Dr. DeBiasi showed sharp magnetic resonance imaging scans from their research study of a fetal brain at 18 and 22 weeks gestation that indicated clear abnormalities, including abnormal cortical folding. Ultrasound images taken at the exact same time points did not detect these abnormalities, she said.

Asked for advice by an attendee whose clinic treats women who regularly travel between California and Mexico, Dr. DeBiasi underscored the fact that Zika infection poses a risk to developing fetuses even if the pregnant woman has no symptoms of infection. “Whether or not they’re symptomatic, the risk is the same. It’s hard for people to understand that. That is No. 1,” she said.

Another challenge is for women who scrupulously follow the CDC’s guidance on lowering their infection risk while traveling. Upon return, those women may be unaware that they could still be exposed to Zika through unprotected sex with their partner who also has travelled, for as long as six months after travel.

zika virus

Will the Zika epidemic re-emerge in 2017?

Anthony Fauci

Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health, discussed the possibility of a reemergence of Zika virus at Children’s National Research and Education Week.

Temperatures are rising, swelling the population of Aedes mosquitoes that transmit the Zika virus and prompting an anxious question: Will the Zika epidemic re-emerge in 2017?

Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases at the National Institutes of Health (NIH), sketched out contrasting scenarios. Last year in Puerto Rico, at least 13 percent of residents were infected with Zika, “a huge percentage of the population to get infected in any one outbreak,” Dr. Fauci says. But he quickly adds: “That means that 87 percent of the population” did not get infected. When the chikungunya virus swept through the Caribbean during an earlier outbreak, it did so in multiple waves. “We are bracing for a return of Zika, but we shall see what happens.” Dr. Fauci says.

When it comes to the continental United States, however, previous dengue and chikungunya outbreaks were limited to southern Florida and Texas towns straddling the Mexican border. Domestic Zika transmission last year behaved in much the same fashion.

“Do we think we’re going to get an outbreak [of Zika] that is disseminated throughout the country? The answer is no,” Dr. Fauci adds. “We’re not going to see a major Puerto Rico-type outbreak in the continental United States.”

Dr. Fauci’s remarks were delivered April 24 to a standing-room-only auditorium as part of Research and Education Week, an annual celebration of the cutting-edge research and innovation happening every day at Children’s National. He offered a sweeping, fact-filled summary of Zika’s march across the globe: The virus was first isolated from a primate placed in a treehouse within Uganda’s Zika forest to intentionally become infected; Zika lurked under the radar for the first few decades, causing non-descript febrile illness; it bounced from country to country, causing isolated outbreaks; then, it transformed into an infectious disease of international concern when congenital Zika infection was linked to severe neural consequences for babies born in Brazil.

zika virus

Zika virus lurked under the radar for several decades, causing non-descript febrile illness; it bounced from country to country, resulting in isolated outbreaks; then, it transformed into an infectious disease of international concern.

“I refer to Brazil and Zika as the perfect storm,” Dr. Fauci told attendees. “You have a country that is a large country with a lot of people, some pockets of poverty and economic depression –  such as in the northeastern states –  without good health care there, plenty of Aedes aegypti mosquitoes and, importantly, a totally immunologically naive population. They had never seen Zika before. The right mosquitoes. The right climate. The right people. The right immunological status. And then, you have the explosion in Brazil.”

In Brazil, 139 to 175 babies were born each year with microcephaly – a condition characterized by a smaller than normal skull – from 2010 to 2014. From 2015 through 2016, that sobering statistic soared to 5,549 microcephaly cases, 2,366 of them lab-confirmed as caused by Zika.

Microcephaly “was the showstopper that changed everything,” says Dr. Fauci. “All of a sudden, [Zika] went from a relatively trivial disease to a disease that had dire consequences if a mother was infected, particularly during the first trimester.”

As Zika infections soared, ultimately affecting more than 60 countries, the virus surprised researchers and clinicians a number of times, by:

  • Being spread via sex
  • Being transmitted via blood transfusion, a finding from Brazil that prompted the Food and Drug Administration to recommend testing for all U.S. donated blood and blood products
  • Decimating developing babies’ neural stem cells and causing a constellation of congenital abnormalities, including vision problems and contractions to surviving infants’ arms and legs
  • Causing Guillain-Barré syndrome
  • Triggering transient hearing loss
  • Causing myocarditis, heart failure and arrhythmias

When it comes to the U.S. national response, Dr. Fauci says one of the most crucial variables is how quickly a vaccine becomes available to respond to the emerging outbreak. For Zika, the research community was able to sequence the virus and launch a Phase I trial in about three months, “the quickest time frame from identification to trial in the history of all vaccinology,” he adds.

Zika is a single-stranded, enveloped RNA virus that is closely related to dengue, West Nile, Japanese encephalitis and Yellow fever viruses, which gives the NIH and others racing to produce a Zika vaccine a leg up. The Yellow fever vaccine, at 99 percent effectiveness, is one of the world’s most effective vaccines.

“I think we will wind up with an effective vaccine. I don’t want to be over confident,” Dr. Fauci  says. “The reason I say I believe that we will is because [Zika is] a flavivirus, and we have been able to develop effective flavivirus vaccines. Remember, Yellow fever is not too different from Zika.”

Sarah Mulkey Columbia Zika Study

Damage may lurk in “normal” Zika-exposed brains

Sarah Mulkey Columbia Zika Study

An international study that includes Sarah B. Mulkey, M.D., Ph.D., aims to answer one of the most vexing questions about Zika: If babies’ brains appear “normal” at birth, have they survived Zika exposure in the womb with few neurological repercussions? Dr. Mulkey presented preliminary findings at PAS2017.

It has been well established by researchers, including scientists at Children’s National Health System, that the Zika virus is responsible for a slew of birth defects – such as microcephaly, other brain malformations and retinal damage – in babies of infected mothers. But how the virus causes these often devastating effects, and who exactly is affected, has not been explained fully.

Also unknown is whether exposed babies that appear normal at birth are truly unaffected by the virus or have hidden problems that might surface later. The majority of babies born to Zika-infected mothers in the United States appear to have no evidence of Zika-caused birth defects, but that’s no guarantee that the virus has not caused lingering damage.

Recently, Sarah B. Mulkey, M.D., Ph.D., made a trip to Colombia, where Children’s National researchers are collaborating on a clinical study. There, she tested Zika-affected babies’ motor skills as they sat, stood and lay facing upward and downward. The international study aims to answer one of the most vexing questions about Zika: If babies’ brains appear “normal” at birth, have they survived Zika exposure in the womb with few neurological repercussions?

“We don’t know the long-term neurological consequences of having Zika if your brain looks normal,” says Dr. Mulkey, a fetal-neonatal neurologist who is a member of Children’s Congenital Zika Virus Program. “That is what’s so scary, the uncertainty about long-term outcomes.”

According to the Centers for Disease Control and Prevention (CDC), one in 10 pregnancies across the United States with laboratory-confirmed Zika virus infection results in birth defects in the fetus or infant. For the lion’s share of Zika-affected pregnancies, then, babies’ long-term prospects remain a mystery.

“This is a huge number of children to be impacted and the impact, as we understand, has the potential to be pretty significant,” Dr. Mulkey adds.

Dr. Mulkey, the lead author, presented the research group’s preliminary findings during the 2017 annual meeting of the Pediatric Academic Societies (PAS). The presentation was one of several that focused on the Zika virus. Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases at Children’s National, organized two invited symposia devoted to the topic of Zika: Clinical perspectives and knowledge gaps; and the science of Zika, including experimental models of disease and vaccines. Dr. DeBiasi’s presentation included an overview of the 68 Zika-exposed or infected women and infants seen thus far by Children’s multidisciplinary Congenital Zika Virus Program.

“As the world’s largest pediatric research meeting, PAS2017 is an ideal setting for panelists to provide comprehensive epidemiologic and clinical updates about the emergence of Congenital Zika Syndrome and to review the pathogenesis of infection as it relates to the fetal brain,” Dr. DeBiasi says. “With temperatures already rising to levels that support spread of the Aedes mosquito, it is imperative for pediatricians around the world to share the latest research findings to identify the most effective interventions.”

As one example, Dr. Mulkey’s research sought to evaluate the utility of using magnetic resonance imaging (MRI) to evaluate fetal brain abnormalities in 48 babies whose mothers had confirmed Zika infection during pregnancy. Forty-six of the women/infant pairs enrolled in the prospective study are Colombian, and two are Washington, D.C. women who were exposed during travel to a Zika hot zone.

The women were infected with Zika during all three trimesters and experienced symptoms at a mean gestational age of 8.4 weeks. The first fetal MRIs were performed as early as 18 weeks’ gestation. Depending upon the gestational age when they were enrolled in the study, the participants had at least one fetal MRI as well as serial ultrasounds. Thirty-six fetuses had a second fetal MRI at about 31.1 gestational weeks. An experienced pediatric neuroradiologist evaluated the images.

Among the 48 study participants, 45 had “normal” fetal MRIs.

Three fetuses exposed to Zika in the first or second trimester had abnormal fetal MRIs:

  • One had heterotopia and an early, abnormal fold on the surface of the brain, indications that neurons did not migrate to their anticipated destination during brain development. This pregnancy was terminated at 23.9 gestational weeks.
  • One had parietal encephalocele, a rare birth defect that results in a sac-like protrusion of the brain through an opening in the skull. According to the CDC, this defect affects one in 12,200 births, or 340 babies, per year. It is not known if this rare finding is related to Zika infection.
  • One had a thin corpus callosum, dysplastic brainstem, heterotopias, significant ventriculomegaly and generalized cerebral/cerebellar atrophy.

“Fetal brain MRI detected early structural brain changes in fetuses exposed to the Zika virus in the first and second trimester,” Dr. Mulkey says. “The vast majority of fetuses exposed to Zika in our study had normal fetal MRI, however. Our ongoing study, underwritten by the Thrasher Research Fund, will evaluate their long-term neurodevelopment.”

Adré J. du Plessis, MB.Ch.B., M.P.H., director of the Fetal Medicine Institute and senior author of the paper, notes that this group “is a very important cohort to follow as long as Dr. Mulkey’s funding permits. We know that microcephaly is among the more devastating side effects caused by Zika exposure in utero. Unanswered questions remain about Zika’s impact on hearing, vision and cognition for a larger group of infants. Definitive answers only will come with long-term follow-up.”

Many of the Colombian families live in Sabanalarga, a relatively rural, impoverished area with frequent rain, leaving pockets of fresh water puddles that the mosquito that spreads Zika prefers, Dr. Mulkey adds. Families rode buses for hours for access to fetal MRI technology, which is not common in Colombia.

“The mothers are worried about their babies. They want to know if their babies are doing OK,” she says.

Catherine Limperopoulous

The brain’s fluid-filled spaces during growth

Catherine Limperopoulous

Catherine Limperopoulous, Ph.D., and her colleagues used volumetric MRIs to assess how the ventricles, cerebrospinal fluid and the rest of the fetal brain normally change over time.

The human brain is not one solid mass. Buried within its gray and white matter are a series of four interconnected chambers, called ventricles, which produce cerebrospinal fluid. These ventricles are readily apparent on the fetal ultrasounds that have become the standard of prenatal care in the United States and most developed countries around the world. Abnormalities in the ventricles’ size or shape – or both – can give doctors an early warning that fetal brain development might be going awry.

But what is abnormal? It is not always clear, says Catherine Limperopoulos, Ph.D., director of the Developing Brain Research Laboratory at Children’s National Health System. Limperopoulos explains that despite having many variations in fetal ventricles, some infants have completely normal neurodevelopmental outcomes later. On the other hand, some extremely subtle variations in shape and size can signal problems.

On top of these complications are the tools clinicians typically use to assess the ventricles. Limperopoulos explains that most early indications of ventricle abnormalities come from ultrasounds, but the finer resolution of magnetic resonance imaging (MRI) can provide a more accurate assessment of fetal brain development. Still, both standard MRI and ultrasound provide only two-dimensional pictures, making it difficult to quantify slight differences in the volume of structures.

To help solve these problems, Limperopoulos and her colleagues recently published a paper in Developmental Neuroscience that takes a different tack. The team performed volumetric MRIs – a technique that provides a precise three-dimensional measure of structural volumes – on the brains of healthy fetuses to assess how the ventricles, cerebrospinal fluid and the rest of the brain normally change over time. Limperopoulos’ team recently performed a similar study to assess normal volumetric development in the brain’s solid tissues.

Previous studies published on comparable topics typically used information gathered from subjects who initially had clinical concerns but eventually were dismissed from these studies for not having worrisome diagnoses in the end. This might not truly reflect a typical population of pregnant women, Limperopoulos says.

Working with 166 pregnant women with healthy pregnancies spanning from 18 to 40 weeks gestation, the researchers performed volumetric MRIs on their singleton fetuses that covered every week of this second half of pregnancy. This technique allowed them to precisely calculate the volumes of structures within the fetal brain and get an idea of how these volumes changed over time within the group.

Their results show that over the second and third trimester:

  • The lateral ventricles, the largest ventricles found in the cerebrum with one for each brain hemisphere, grew about two-fold;
  • The third ventricle, found in the forebrain, grew about 23-fold;
  • The fourth ventricle, found in the hindbrain, grew about eight-fold;
  • And the extra-axial cerebrospinal fluid, found under the lining of the brain, increased about 11-fold.

The total brain volume increased 64-fold over this time, with the parenchyma – the solid brain tissue that encompasses gray and white matter – growing significantly faster than the cerebrospinal fluid-filled spaces.

Limperopoulos points out that the ability to measure the growth of the brain’s fluid-filled spaces relative to the surrounding brain tissue can provide critical information to clinicians caring for developing fetuses. In most cases, knowing what is normal allows doctors to reassure pregnant women that their fetus’ growth is on track. Abnormalities in these ratios can provide some of the first signals to alert doctors to blockages in cerebrospinal fluid flow, abnormal development, or the loss of brain tissue to damage or disease. Although the neurodevelopmental outcomes from each of these conditions can vary significantly, traditional ultrasounds or MRIs might not be able to distinguish these possibilities from each other. Being able to differentiate why cerebrospinal fluid spaces have abnormal shapes or sizes might allow doctors to better counsel parents, predict neurological outcomes, or potentially intervene before or after birth to mitigate brain damage.

“By developing a better understanding of what’s normal,” Limperopoulos says, “we can eventually identify reliable biomarkers of risk and guide interventions to minimize risks for vulnerable fetuses.”

Kazue Hashimoto Torii

A brain’s protector may also be its enemy

Kazue Hashimoto Torii

By looking back to the earliest moments of embryonic brain development, Kazue Hashimoto-Torii, Ph.D. and her collaborators sought to explain the molecular and cellular bases for complex congenital brain disorders that can result from exposure to harmful agents.

When the brain is exposed to an environmental stressor all is not immediately lost. Brain cells have mechanisms that protect them against the ravages of alcohol and other toxic substances. One of these is a protein the cells make, known as Heat Shock Factor 1 (Hsf1), which helps to shield them from damage. The fetal brain also can make Hsf1, which protects its particularly vulnerable cells from environmental stressors that pregnant mothers are exposed to during gestation.

However, a new study suggests that this system is not perfect. Research led by Children’s National Health System scientists suggests that when too much Hsf1 is produced, it actually can impair the brain during development. While this finding was made in a preclinical model, it raises questions about neural risks for human infants if their mothers drink alcohol in the first or second trimester of pregnancy.

When fetuses are chronically exposed to harmful agents such as alcohol, ethanol or methyl mercury in utero, the experience can negatively affect fetal brain development in unpredictable ways. Some fetal brains show little or no damage, while others suffer severe damage. By looking at the earliest moments of embryonic brain development, an international research team that includes five Children’s National authors sought to explain the molecular and cellular bases for complex congenital brain disorders that can result from exposure to such harmful agents.

“From a public health perspective, there is ongoing debate about whether there is any level of drinking by pregnant women that is ‘safe,’ ” says Kazue Hashimoto-Torii, Ph.D., principal investigator in the Center for Neuroscience Research at Children’s National and senior author of the paper published May 2 in Nature Communications. “We gave ethanol to pregnant preclinical models and found their offspring’s neural cells experienced widely differing responses to this environmental stress. It remains unclear which precise threshold of stress exposure represents the tipping point, transforming what should be a neuroprotective response into a damaging response. Even at lower levels of alcohol exposure, however, the risk for fetal neural cells is not zero,” Hashimoto-Torii adds.

The cerebral cortex – the thin outer layer of the cerebrum and cerebellum that enables the brain to process information – is particularly vulnerable to disturbances in the womb, the study authors write. To fend off insult, neural cells employ a number of self-preservation strategies, including launching the protective Hsf1-Heat shock protein (Hsp) signaling pathway that is used by a wide range of organisms, from single-cell microbes to humans. Developing fetuses activate Hsf1-Hsp signaling upon exposure to environmental stressors, some to no avail.

To help unravel the neurological mystery, the researchers used a method that allows a single molecule to fluoresce during stress exposure. They tapped specific environmental stressors, such as ethanol, hydrogen peroxide and methyl mercury – each of which are known to produce oxidative stress at defined concentrations. And, using an experimental model, they examined the Hsf1 activation pattern in the developing cerebral cortex by creating a marker, an encoding gene tagged with a type of fluorescent protein that makes it glow bright red.

“Our results suggest that heterogeneous events of abnormal brain development may occur probabilistically – which explains patterns of cortical malformations that vary with each individual, even when these individuals are exposed to similar levels of environmental stressors,” Hashimoto-Torii adds.

Among the more striking findings, neural cells with excessively high levels of Hsf1-Hsp activation due to ethanol exposure experience disruptions to normal development, with delayed migration by immature cortical neurons. For the fetal brain to develop normally, neurons need to migrate to precise places in the brain at just the right time to enable robust neural connections. When neurons fail to arrive at their destinations or get there too late, there can be gaps in the neural network, compromising efficient and effective communication across the brain’s various regions.

“Even a short period of Hsf1 overactivation during prenatal development causes critical neuronal migration deficiency. The severity of deficiency depends on the duration of Hsf1 overactivation,” Hashimoto-Torii says. “Expression patterns vary, however, across various tissues. Stochastic response within individual cells may be largely responsible for variability seen within tissue and organs.”

The research team found one bright spot: Cortical neurons that stalled due to lack of the microtubule-associated molecule Dcx were able to regain their ability to migrate properly when the gene was replenished after birth. A reduction in Hsf1 activity after birth, however, did not show the same ability to trigger the “reset” button on neural development.

“The finding suggests that genes other than microtubule-associated genes may play pivotal roles in ensuring that migrating neurons reach their assigned destinations in the brain at the right time – despite the added challenge of excessive Hsf1 activation,” according to Hashimoto-Torii.

Sarah Mulkey receives NIH career development grant

Sarah Mulkey

Sarah B. Mulkey, M.D., Ph.D., a fetal-neonatal neurologist in the Division of Fetal and Translational Medicine at Children’s National Health System, has received a KL2 award from the Clinical and Translational Science Institute at Children’s National, which is funded through the National Institutes of Health. This grant, totaling $135,000 over two years, will allow Dr. Mulkey to reserve dedicated research time — apart from her clinical duties — to pursue a research project studying the autonomic nervous system in newborns.

Dr. Mulkey’s project will focus on developing a better understanding of this part of the nervous system — responsible for unconscious control of basic bodily functions, such as heart rate and breathing — in healthy, full-term babies, and how this system integrates with other brain regions responsible for mood and stress responses. Dr. Mulkey and colleagues then will compare these findings to those from babies whose autonomic nervous systems might have abnormal development, such as infants born pre-term or those with congenital heart defects or intrauterine growth restriction. The findings could help researchers develop new interventions to optimize autonomic nervous system development in vulnerable patients and improve long-term neurologic and psychological health in children.

“This award is an incredible opportunity for a young investigator since it provides protected time both for research and career development,” Dr. Mulkey says. “We need more clinicians in pediatric research to improve medical care and outcomes for children. This award makes it possible for me to devote significant time to research in order to contribute to new knowledge about babies throughout my career.”

To that end, NIH’s National Center for Advancing Translational Sciences has created a new LinkedIn page to highlight the innovative work of KL2 scholars.

Drs. DeBiasi and du Plessis

Zika virus, one year later

Drs. DeBiasi and du Plessis

A multidisciplinary team at Children’s National has consulted on 66 Zika-affected pregnancies and births since May 2016.

The first pregnant patient with worries about a possible Zika virus infection arrived at the Children’s National Health System Fetal Medicine Institute on Jan. 26, 2016, shortly after returning from international travel.

Sixteen months ago, the world was just beginning to learn how devastating the mosquito-borne illness could be to fetuses developing in utero. As the epidemic spread, a growing number of sun-splashed regions that harbor mosquitoes that efficiently spread the virus experienced a ballooning number of Zika-affected pregnancies and began to record sobering birth defects.

The Washington, D.C. patient’s concerns were well-founded. Exposure to Zika virus early in her pregnancy led to significant fetal brain abnormalities, and Zika virus lingered in the woman’s bloodstream months after the initial exposure — longer than the Centers for Disease Control and Prevention (CDC) then thought was possible.

The research paper describing the woman’s lengthy Zika infection, published by The New England Journal of Medicine, was selected as one of the most impactful research papers written by Children’s National authors in 2016.

In the intervening months, a multidisciplinary team at Children National has consulted on 66 pregnancies and infants with confirmed or suspected Zika exposure. Thirty-five of the Zika-related evaluations were prenatal, and 31 postnatal evaluations assessed the impact of in utero Zika exposure after the babies were born.

The continuum of Zika-related injuries includes tragedies, such as a 28-year-old pregnant woman who was referred to Children’s National after imaging hinted at microcephaly. Follow-up with sharper magnetic resonance imaging (MRI) identified severe diffuse thinning of the cerebral cortical mantle, evidence of parenchymal cysts in the white matter and multiple contractures of upper and lower extremities with muscular atrophy.

According to a registry of Zika-affected pregnancies maintained by the CDC, one in 10 pregnancies across the United States with laboratory-confirmed Zika virus infection has resulted in birth defects in the fetus or infant.

“More surprising than that percentage is the fact that just 25 percent of infants underwent neuroimaging after birth – despite the CDC’s recommendation that all Zika-exposed infants undergo postnatal imaging,” says Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases and co-director of the Congenital Zika Virus Program at Children’s National. “Clinicians should follow the CDC’s guidance to the letter, asking women about possible exposure to Zika and providing multidisciplinary care to babies after birth. Imaging is an essential tool to accurately monitor the growing baby’s brain development.”

Adré du Plessis, M.B.Ch.B., M.P.H., director of the Fetal Medicine Institute and Congenital Zika Virus Program co-leader, explains the challenges: ”When it comes to understanding the long-term consequences for fetuses exposed to the Zika virus, we are still on the steepest part of the learning curve. Identifying those children at risk for adverse outcomes will require a sustained and concerted multidisciplinary effort from conception well beyond childhood.”

In addition to counseling families in the greater Washington, D.C. region, the Children’s research team is collaborating with international colleagues to conduct a clinical trial that has been recruiting Zika-infected women and their babies in Colombia. Pediatric Resident Youssef A. Kousa, D.O., Ph.D., M.S., and Neurologist Sarah B. Mulkey, M.D., Ph.D., will present preliminary findings during Research and Education Week 2017.

In Colombia as well as the District of Columbia, a growing challenge continues to be assessing Zika’s more subtle effects on pregnancies, developing fetuses and infants, says Radiologist Dorothy Bulas, M.D., another member of Children’s multidisciplinary Congenital Zika Virus Program.

The most severe cases from Brazil were characterized by interrupted fetal brain development, smaller-than-normal infant head circumference, brain calcifications, enlarged ventricles, seizures and limbs folded at odd angles. In the United States and many other Zika-affected regions, Zika-affected cases with such severe birth defects are outnumbered by infants who were exposed to Zika in utero but have imaging that appears normal.

In a darkened room, Dr. Bulas pores over magnified images of the brains of Zika-infected babies, looking for subtle differences in structure that may portend future problems.

“There are some questions we have answered in the past year, but a number of questions remain unanswered,” Dr. Bulas says. “For neonates, that whole area needs assessment. As the fetal brain is developing, the Zika virus seems to affect the progenitor cells. They’re getting hit quite early on. While we may not detect brain damage during the prenatal period, it may appear in postnatal images. And mild side effects that may not be as obvious early on still have the potential to be devastating.”

test tubes

2016: A banner year for innovation

test tubes

In 2016, clinicians and research scientists working at Children’s National Health System published more than 1,100 articles in high-impact journals about a wide array of topics. A Children’s Research Institute review group selected the top articles for the calendar year considering, among other factors, work published in top-tier journals with impact factors of 9.5 and higher.

“Conducting world-class research and publishing the results in prestigious journals represents the pinnacle of many research scientists’ careers. I am pleased to see Children’s National staff continue this essential tradition,” says Mark L. Batshaw, M.D., Physician-in-Chief and Chief Academic Officer at Children’s National. “While it was difficult for us to winnow the field of worthy contenders to this select group, these papers not only inform the field broadly, they epitomize the multidisciplinary nature of our research,” Dr. Batshaw adds.

The published papers explain research that includes discoveries made at the genetic and cellular levels, clinical insights and a robotic innovation that promises to revolutionize surgery:

  • Outcomes from supervised autonomous procedures are superior to surgery performed by expert surgeons
  • The Zika virus can cause substantial fetal brain abnormalities in utero, without microcephaly or intracranial calcifications
  • Mortality among injured adolescents was lower among patients treated at pediatric trauma centers, compared with adolescents treated at other trauma center types
  • Hydroxycarbamide can substitute for chronic transfusions to maintain transcranial Doppler flow velocities for high-risk children with sickle cell anemia
  • There is convincing evidence of the efficacy of in vivo genome editing in an authentic animal model of a lethal human metabolic disease
  • Sirt1 is an essential regulator of oligodendrocyte progenitor cell proliferation and oligodendrocyte regeneration after neonatal brain injury

Read the complete list.

Dr. Batshaw’s announcement comes on the eve of Research and Education Week 2017 at Children’s National, a weeklong event that begins April 24. This year’s theme, “Collaboration Leads to Innovation,” underscores the cross-cutting nature of Children’s research that aims to transform pediatric care.

A sirtuin might help repair a common neonatal brain injury

Sirtuin could repair common neonatal brain injury

A sirtuin might help repair a common neonatal brain injury

A team of researchers  investigated the molecular mechanisms behind oligodendrocyte progenitor cell proliferation in neonatal hypoxia.

What’s known

Hypoxia, or a lack of oxygen, is a major cause of diffuse white matter injury (DWMI). This condition leads to permanent developmental disabilities in prematurely born infants. The long-term abnormalities of the brain’s white matter that characterize DWMI are caused by the loss of a specific type of cells known as oligodendrocytes, which support nerve cells and produce myelin, a lipid and protein sheath that electrically insulates nerve cells. Oligodendrocytes are produced by a population of immature cells known as oligodendrocyte progenitor cells (OPCs). Previous research has shown that hypoxia can trigger OPCs to proliferate and presumably produce new oligodendrocytes. The molecular pathways that hypoxia triggers to make new OPCs remain unclear.

What’s new

A team of researchers led by Vittorio Gallo, Ph.D., director of the Center for Neuroscience Research and the Intellectual and Developmental Disabilities Research Center at Children’s National Health System, investigated the molecular mechanisms behind what prompts OPCs to proliferate in a preclinical model of neonatal hypoxia. The researchers found that a molecule known as Sirt1 acts as a major regulator of OPC proliferation and regeneration. Sirt1 is a sirtuin, a class of molecules that has attracted interest over the past several years for its role in stem cells, aging and inflammation. Hypoxia appears to induce Sirt1 formation. When the researchers prevented brain tissues in petri dishes from making Sirt1 or removed this molecule in preclinical models, these actions prevented OPC proliferation. What’s more, preventing Sirt1 production also inhibited OPCs from making oligodendrocytes. These findings suggest that Sirt1 is essential for replacing oligodendrocytes to repair DWMI after hypoxia. Additionally, finding ways to enhance Sirt1 activity eventually could provide a novel way to help infants recover after hypoxia and prevent DWMI.

Questions for future research

Q: How can Sirt1 activity be enhanced in preclinical models and humans?
Q: Can deficits triggered by diffuse white matter injury be prevented or reversed with Sirt1?
Q: Which other treatments might be useful for diffuse white matter injury?

Source: Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury.” Jablonska, M., M. Gierdalski, L. Chew, T. Hawley, M. Catron, A. Lichauco, J. Cabrera-Luque, T. Yuen, D. Rowitch and V. Gallo. Published by Nature Communications on Dec. 19, 2016.

Fetal Brain Cells

Tracking environmental stress damage in the brain

Fluorescence Reporter

A team led by Children’s National developed a fluorescence reporter system in an experimental model that can single out neurons that have survived prenatal damage but remain vulnerable after birth.

What’s known

When fetuses are exposed to environmental stressors, such as maternal smoking or alcohol consumption, radiation or too little oxygen, some of these cells can die. A portion of those that survive often have lingering damage and remain more susceptible to further environmental insults than healthy cells; however, researchers haven’t had a way to identify these weakened cells. This lack of knowledge has made it difficult to discover the mechanisms behind pathological brain development thought to arise from these very early environmental exposures, as well as ways to prevent or treat it.

What’s new

A team led by Kazue Hashimoto-Torii, Ph.D., a principal investigator in the Center for Neuroscience Research at Children’s National Health System, developed a marker that makes a protein known as Heat Shock Factor 1 glow red. This protein is produced in cells that become stressed through exposure to a variety of environmental insults. Gestation is a particularly vulnerable time for rapidly dividing nerve cells in the fetal brain. Tests showed that this marker worked not just on cells in petri dishes but also in an experimental model to detect brain cells that were damaged and remained vulnerable after exposure to a variety of different stressors. Tweaks to the system allowed the researchers to follow the progeny of cells that were affected by the initial stressor and track them as they divided and spread throughout the brain. By identifying which neurons are vulnerable, the study authors say, researchers eventually might be able to develop interventions that could slow or stop damage before symptoms arise.

Questions for future research

Q: How do different environmental insults damage brain cells during gestation?
Q: How does this damage translate into pathology in organisms as they mature?
Q: Do the progeny of damaged brain cells retain the same degree of damage as they divide and spread?
Q: Can this new detection system be used to find and track damage in other organs, such as the heart, eye and liver?

Source: Torii, M., S. Masanori, Y.W. Chang, S. Ishii, S.G. Waxman, J.D. Kocsis, P. Rakic and K. Hashimoto-Torii. “Detection of vulnerable neurons damaged by environmental insults in utero.” Published Dec. 22, 2016 by Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1620641114

Sarah B. Mulkey

Researchers tackle Zika’s unanswered questions

Youssef A. Kousa

Youssef A. Kousa, D.O., Ph.D., M.S., is examining whether interplays between certain genes make some women more vulnerable to symptomatic Zika infections.

A Maryland woman traveled to the Dominican Republic early in her pregnancy, spending three weeks with family. She felt dizzy and tired and, at first, attributed the lethargy to jet lag. Then, she experienced a rash that lasted about four days. She never saw a bite or slapped a mosquito while in the Dominican Republic but, having heard about the Zika virus, asked to be tested.

Her blood tested positive for Zika.

Why was this pregnant woman infected by Zika while others who live year-round in Zika hot zones remain free of the infectious disease? And why was she among the slim minority of Zika-positive people to show symptoms?

Youssef A. Kousa, D.O., Ph.D., M.S., a pediatric resident in the child neurology track at Children’s National Health System, is working on a research study that will examine whether interplays between certain genes make some women more vulnerable to symptomatic Zika infections during pregnancy, leaving  some fetuses at higher risk of developing microcephaly.

Dr. Kousa will present preliminary findings during Research and Education Week 2017 at Children’s National.

At sites in Puerto Rico, Colombia and Washington D.C., Dr. Kousa and his research collaborators are actively recruiting study participants and drawing blood from women whose Zika infections were confirmed in the first or second trimester of pregnancy. The blood is stored in test tubes with purple caps, a visual cue that the tube contains an additive that binds DNA, preventing it from being cut up. Additional research sites are currently being developed.

When the blood arrives at Children’s National, Dr. Kousa will use a centrifuge located in a sample preparation room to spin the samples at high speed for 11 minutes. The sample emerges from the centrifuge in three discrete layers, separated by weight. The rose-colored section that rises to the top is plasma. Plasma contains tell-tale signs of the immune system’s past battles with viruses and will be analyzed by Roberta L. DeBiasi, M.D., M.S., Chief of the Division of Pediatric Infectious Diseases at Children’s National, and Dr. Kousa’s mentor.

A slender line at the middle indicates white blood cells. The dark red layer is heavier red blood cells that sink to the bottom. This bottom half of the test tube, where the DNA resides, is where Dr. Kousa will perform his genetic research.

For years, Dr. Kousa has worked to identify genetic risk factors that influence which fetuses develop cleft lip and palate. In addition to genetic variances that drive disease, he looks at environmental overlays that can trigger genes to respond in ways that cause pediatric disease. When Zika infections raced across the globe, he says it was important to apply the same genetic analyses to the emerging disease. Genes make proteins that carry out instructions, but viral infection disrupts how genes interact, he says. Cells die. Other cells do not fully mature.

While certain poverty-stricken regions of Brazil have recorded the highest spikes in rates of microcephaly, more is at play than socioeconomics, he says. “It didn’t feel like all of the answers lie in the neighborhood. One woman with a Zika-affected child can live just down the street from a child who is more or less severely affected by Zika.”

As a father, Dr. Kousa is particularly concerned about how Zika stunts growth of the fetal brain at a time when it should expand exponentially. “I have three kids. You see them as they achieve milestones over time. It makes you happy and proud as a parent,” he says.

Sarah B. Mulkey

Sarah B. Mulkey, M.D., Ph.D., is studying whether infants exposed to Zika in utero achieve the same developmental milestones as uninfected infants.

While Dr. Kousa concentrates on Zika’s most devastating side effects, his colleague Sarah B. Mulkey, M.D., Ph.D., is exploring more subtle damage Zika can cause to fetuses exposed in utero. In the cohort of Colombian patients that Dr. Mulkey is researching, just 8 percent had abnormal fetal brain magnetic resonance images (MRIs). At first glance, the uncomplicated MRIs appear to be reassuring news for the vast majority of pregnant women.

Dr. Mulkey also will present preliminary findings during Research and Education Week 2017 at Children’s National.

In the fetus, the Zika virus makes a beeline to the developing brain where it replicates with ease and can linger after birth. “We need to be cautious about saying the fetal MRI is ‘normal’ and the infant is going to be ‘normal,’ ” Dr. Mulkey says. “We know with congenital cytomegalovirus that infected infants may not show symptoms at birth yet suffer long-term consequences, such as hearing deficits and vision loss.”

Among Zika-affected pregnancies in Colombia in which late-gestational age fetal MRIs were normal, Dr. Mulkey will use two different evaluation tools at 6 months and 1 year of age to gauge whether the babies accomplish the same milestones as peers. One evaluation tool is a questionnaire that has been validated in Spanish.

At 6 months and 1 year of age, the infants’ motor skills will be assessed, such as their ability to roll over in both directions, sit up, draw their feet toward their waist, stand, take steps independently and purposefully move their hands. Videotapes of the infants performing the motor skills will be scored by Dr. Mulkey and her mentor, Adre du Plessis, M.B.Ch.B., Chief of the Division of Fetal and Transitional Medicine at Children’s National. The Thrasher Research Fund is funding the project, “Neurologic outcomes of apparently normal newborns from Zika virus-positive pregnancies,” as part of its Early Career Award Program.

Both research projects are extensions of a larger multinational study co-led by Drs. du Plessis and DeBiasi that explores the impact of prolonged Zika viremia in pregnant women, fetuses and infants; the feasibility of using fetal MRI to describe the continuum of neurological impacts in Zika-affected pregnancies; and long-term developmental issues experienced by Zika-affected infants.

Chinwe Unegbu

PDE-5 inhibitors for pediatric hypertension

Chinwe Unegbu

A study led by Chinwe Unegbu, M.D., indicates the benefits of PDE-5 inhibitors to treat pediatric pulmonary hypertension far outweigh potential harmful side effects.

Pulmonary hypertension (PH), when pressure in the blood vessels leading from the heart to the lungs is too high, is primarily a disease of adults: Patient registries suggest that the mean age of diagnosis is around age 50. However, more and more children are developing this condition, says Chinwe Unegbu, M.D., an assistant professor in the Division of Anesthesiology, Pain and Perioperative Medicine at Children’s National Health System.

Although adults with PH have several different effective treatments, Dr. Unegbu adds, children have few options. One of these is a class of medications known as phosphodiesterase type 5 (PDE-5) inhibitors, which act on molecular pathways that can open up constricted blood vessels. However, some studies have raised questions about the safety of this class of medications, particularly with long-term use of high dosages.

In a new study, Dr. Unegbu and colleagues performed a systematic review of available literature on this class of drugs evaluating their effectiveness and safety for pediatric patients. The review showed that like all medications, PDE-5 inhibitors have some risks. However, Dr. Unegbu says, the review showed that their benefits, including improved echocardiography measurements, cardiac catheterization parameters and oxygenation, far outweigh potential harmful side effects.

“Pediatricians across the nation view the rise in pediatric PH cases with growing concern because the disease can worsen, leading to right ventricular failure and death,” says Dr. Unegbu, lead author of the study. “PH can occur in newborns, infants and children who have a number of health conditions, including congenital heart disease, the most common birth defect among newborns. There are few available treatments for the growing population of children affected by this condition, so it is heartening that the evidence supports PDE-5 inhibitors for patients with PH.”

Patients with PH experience increased pressure in the pulmonary arteries, which carry blood from the heart to the lungs where it picks up oxygen that is ferried throughout the body. According to the National Institutes of Health, this leads patients to suffer from shortness of breath while doing routine tasks, chest pain and a racing heartbeat. Changes to the arteries make it progressively harder for the heart to pump blood to the lungs, which forces the heart to work even harder. Despite the heart muscle compensating by growing larger, less blood ultimately flows from the right to the left side of the heart which can compromise the kidney, liver and other organs, Dr. Unegbu says.

The study team included four researchers from Johns Hopkins University: Corina Noje, M.D., John D. Coulson, M.D., Jodi B. Segal, M.D., M.P.H., and study senior author Lewis Romer, M.D. The researchers scoured Medline, Embase, SCOPUS and the Cochrane Central Register of Controlled Trials, looking for studies that examined PDE-5 inhibitor use by pediatric patients with primary and secondary PH. Their goals included describing the nature and scale of the pediatric PH, assessing available pharmacologic therapies and conducting the systematic review of clinical studies of PDE-5 inhibitors, a mainstay of PH therapy.

They identified 1,270 studies. Twenty-one met the criteria to be included in the comprehensive review, including eight randomized controlled trials – the gold standard. The remaining 13 were  observational studies in children ranging in age from extremely preterm to adolescence.

“Although there is some risk associated with PDE-5 inhibitor use by pediatric patients with PH, overwhelmingly the data indicate the benefits of using this class of drugs far outweigh the risks. When we looked at specific clinical outcomes, we see definite improvement in a number of measures including oxygenation, hemodynamics and better clinical outcomes: The patients are doing better, feeling better and their exercise capacity rises,” Dr. Unegbu says.

Because of lingering concerns about increased mortality, they also looked at toxicity data associated with this class of drugs. “With the exception of a single trial, the remaining trials included in our review did not demonstrate increased mortality in patients placed on this class of medicines, which was reassuring to us,” she says. Side effects ranged from mild to moderate, such as flushing and headaches. “We can say with a good degree of confidence that providers should feel fairly comfortable prescribing PDE-5 inhibitors.”

Ideally, researchers would like to have access to patient-specific measures that are a good fit for neonates and infants. Unlike adults, infants’ exercise capacity cannot be measured by their ability to climb stairs or use a treadmill. Another limitation, the study authors note, is the dearth of adequately powered clinical trials conducted in kids.

“Most of the studies have been conducted in adults. However, this disease unfolds in a much different fashion in children compared with adults,” Dr. Unegbu says. “We are desperately in need of high-quality studies in the form of randomized controlled trials in pediatric patients and studies that examine the full range of formulations of this class of drugs.”

Dr. Keating and Abigail

Multidisciplinary approach to hydrocephalus care

Reflective of the myriad symptoms and complications that can accompany hydrocephalus, a multidisciplinary team at Children’s National works with patients and families for much of childhood.

The Doppler image on the oversized computer screen shows the path taken by blood as it flows through the newborn’s brain, with bright blue distinguishing blood moving through the middle cerebral artery toward the frontal lobe and bright red depicting blood coursing away. Pitch black zones indicate ventricles, cavities through which cerebrospinal fluid usually flows and where hydrocephalus can get its start.

The buildup of excess cerebrospinal fluid in the brain can begin in the womb and can be detected by fetal magnetic resonance imaging. Hydrocephalus also can crop up after birth due to trauma to the head, an infection, a brain tumor or bleeding in the brain, according to the National Institutes of Health. An estimated 1 to 2 per 1,000 newborns have hydrocephalus at birth.

When parents learn of the hydrocephalus diagnosis, their first question tends to be “Is my child going to be OK?” says Suresh Magge, M.D., a pediatric neurosurgeon at Children’s National Health System.

“We have a number of ways to treat hydrocephalus. It is one of the most common conditions that pediatric neurosurgeons treat,” Dr. Magge adds.

Unlike fluid build-up elsewhere in the body where there are escape routes, with hydrocephalus spinal fluid becomes trapped in the brain. To remove it, surgeons typically implant a flexible tube called a shunt that drains excess fluid into the abdomen, an interim stop before it is flushed away. Another surgical technique, called an endoscopic third ventriculostomy has the ability to drain excess fluid without inserting a shunt, but it only works for select types of hydrocephalus, Dr. Magge adds.

For the third year, Dr. Magge is helping to organize the Hydrocephalus Education Day on Feb. 25, a free event that offers parents an opportunity to learn more about the condition.

Reflective of the myriad symptoms and complications that can accompany hydrocephalus, such as epilepsy, cerebral palsy, cortical vision impairment and global delays, a multidisciplinary team at Children’s National works with patients and families for much of childhood.

Neuropsychologist Yael Granader, Ph.D., works with children ages 4 and older who have a variety of developmental and medical conditions. Granader is most likely to see children and adolescents with hydrocephalus once they become medically stable in order to assist in devising a plan for school support services and therapeutic interventions. Her assessments can last an entire day as she administers a variety of tasks that evaluate how the child thinks and learns, such as discerning patterns, assembling puzzles, defining words, and listening to and remembering information.

Neuropsychologists work with schools in order to help create the most successful academic environment for the child. For example, some children may struggle to visually track across a page accurately while reading; providing a bookmark to follow beneath the line is a helpful and simple accommodation to put in place. Support for physical limitations also are discussed with schools in order to incorporate adaptive physical education or to allow use of an elevator in school.

“Every child affected by hydrocephalus is so different. Every parent should know that their child can learn,” Granader says. “We’re going to find the best, most supportive environment for them. We are with them on their journey and, every few years, things will change. We want to be there to help with emerging concerns.”

Another team member, Justin Burton, M.D., a pediatric rehabilitation specialist, says rehabilitation medicine’s “piece of the puzzle is doing whatever I can to help the kids function better.” That means dressing, going to the bathroom, eating and walking independently. With babies who have stiff, tight muscles, that can mean helping them through stretches, braces and medicine management to move muscles smoothly in just the way their growing bodies want. Personalized care plans for toddlers can include maintaining a regular sleep-wake cycle, increasing attention span and strengthening such developmental skills as walking, running and climbing stairs. For kids 5 and older, the focus shifts more to academic readiness, since those youths’ “full-time job” is to become great students, Dr. Burton says.

The area of the hospital where children work on rehabilitation is an explosion of color and sounds, including oversized balance balls of varying dimensions in bright primary colors, portable basketball hoops with flexible rims at multiple heights, a set of foam stairs, parallel bars, a climbing device that looks like the entry to playground monkey bars and a chatterbox toy that lets a patient know when she has opened and closed the toy’s doors correctly.

“We end up taking care of these kids for years and years,” he adds. “I always love seeing the kids get back to walking and talking and getting back to school. If we can get them back out in the world and they’re doing things just like every other kid, that’s success.”

Meanwhile, Dr. Magge says research continues to expand the range of interventions and to improve outcomes for patients with hydrocephalus, including:

  • Fluid dynamics of cerebrospinal fluid
  • Optimal ways to drain excess fluid
  • Improving understanding of why shunts block
  • Definitively characterizing post-hemorrhagic ventricular dilation.

Unlike spina bifida, which sometimes can be corrected in utero at some health institutions, hydrocephalus cannot be corrected in the womb. “While we have come a long way in treating hydrocephalus, there is still a lot of work to be done. We continue to learn more about hydrocephalus with the aim of continually improving treatments,” Dr. Magge says.

During a recent office visit, 5-year-old Abagail’s head circumference had measured ¼ centimeter of growth, an encouraging trend, Robert Keating, M.D., Children’s Chief of Neurosurgery, tells the girl’s mother, Melissa J. Kopolow McCall. According to Kopolow McCall, who co-chairs the Hydrocephalus Association DC Community Network, it is “hugely” important that Children’s National infuses its clinical care with the latest research insights. “I have to have hope that she is not going to be facing a lifetime of brain surgery, and the research is what gives me the hope.”

Congenital heart disease and cortical growth

The cover of  Science Translational Medicine features a new study of the cellular-level changes in the brain induced by congenital heart disease. Reprinted with permission from AAAS. Not for download

Disruptions in cerebral oxygen supply caused by congenital heart disease have significant impact on cortical growth, according to a research led by Children’s National Health System. The findings of the research team, which include co-authors from the National Institutes of Health, Boston Children’s Hospital and Johns Hopkins School of Medicine, appear on the cover of Science Translational Medicine. The subventricular zone (SVZ) in normal newborns’ brains is home to the largest stockpile of neural stem/progenitor cells, with newly generated neurons migrating from this zone to specific regions of the frontal cortex and differentiating into interneurons. When newborns experience disruptions in cerebral oxygen supply due to congenital heart disease, essential cellular processes go awry and this contributes to reduced cortical growth.

The preliminary findings point to the importance of restoring these cells’ neurogenic potential, possibly through therapeutics, to lessen children’s long-­term neurological deficits.

“We know that congenital heart disease (CHD) reduces cerebral oxygen at a time when the developing fetal brain most needs oxygen. Now, we are beginning to understand the mechanisms of CHD-­induced brain injuries at a cellular level, and we have identified a robust supply of cells that have the ability to travel directly to the site of injury and potentially provide help by replacing lost or damaged neurons,” says Nobuyuki Ishibashi, M.D., Director of the Cardiac Surgery Research Laboratory at Children’s National, and co­-senior study author.

The third trimester of pregnancy is a time of dramatic growth for the fetal brain, which expands in volume and develops complex structures and network connections that growing children rely on throughout adulthood. According to the National Heart, Lung, and Blood Institute, congenital heart defects are the most common major birth defect, affecting 8 in 1,000 newborns. Infants born with CHD can experience myriad neurological deficits, including behavioral, cognitive, social, motor and attention disorders, the research team adds.

Cardiologists have tapped non­invasive imaging to monitor fetal hearts during gestation in high-­risk pregnancies and can then perform corrective surgery in the first weeks of life to fix damaged hearts. Long­ term neurological deficits due to immature cortical development also have emerged as major challenges in pregnancies complicated by CHD.

“I think this is an enormously important paper for surgeons and for children and families who are affected by CHD. Surgeons have been worried for years that the things we do during corrective heart surgery have the potential to affect the development of the brain. And we’ve learned to improve how we do heart surgery so that the procedure causes minimal damage to the brain. But we still see some kids who have behavioral problems and learning delays,” says Richard A. Jonas, M.D., Chief of the Division of Cardiac Surgery at Children’s National, and co-­senior study author. “We’re beginning to understand that there are things about CHD that affect the development of the brain before a baby is even born. What this paper shows is that the low oxygen level that sometimes results from a congenital heart problem might contribute to that and can slow down the growth of the brain. The good news is that it should be possible to reverse that problem using the cells that continue to develop in the neonate’s brain after birth.”

Among preclinical models, the spatiotemporal progression of brain growth in this particular model most closely parallels that of humans. Likewise, the SVZ cytoarchitecture of the neonatal preclinical model exposed to hypoxia mimics that of humans in utero and shortly after birth. The research team leveraged CellTracker Green to follow the path traveled by SVZ­ derived cells and to illuminate their fate, with postnatal SVZ supplying the developing cortex with newly generated neurons. SVZ­ derived cells were primarily neuroblasts. Superparamagnetic iron oxide nanoparticles supplied answers about long­ term SVZ migration, with SVZ ­derived cells making their way to the prefrontal cortex and the somatosensory cortex of the brain.

“We demonstrated that in the postnatal period, newly generated neurons migrate from the SVZ to specific cortices, with the majority migrating to the prefrontal cortex,” says Vittorio Gallo, Ph.D., Director of the Center for Neuroscience Research at Children’s National, and co­-senior study author. “Of note, we revealed that the anterior SVZ is a critical source of newborn neurons destined to populate the upper layers of the cortex. We challenged this process through chronic hypoxia exposure, which severely impaired neurogenesis within the SVZ, depleting this critical source of interneurons.”

In the preclinical model of hypoxia as well as in humans, brains were smaller, weighed significantly less and had a significant reduction in cortical gray matter volume. In the prefrontal cortex, there was a significant reduction in white matter neuroblasts. Taken as a whole, according to the study authors, the findings suggest that impaired neurogenesis within the SVZ represents a cellular mechanism underlying hypoxia ­induced, region ­specific reduction in immature neurons in the cortex. The prefrontal cortex, the region of the brain that enables such functions as judgment, decision­ making and problem solving, is most impacted. Impairments in higher ­order cognitive functions involving the prefrontal cortex are common in patients with CHD.

This is the consequential malfunction of the brain during congenital heart defects.

Congenital heart disease and white matter injury

This is the consequential malfunction of the brain during congenital heart defects.

Although recent advances have greatly improved the survival of children with congenital heart disease, up to 55 percent will be left with injury to their brain’s white matter – an area that is critical for aiding connection and communication between various regions in the brain.

What’s known

Eight of every 1,000 children born each year have congenital heart disease (CHD). Although recent advances have greatly improved the survival of these children, up to 55 percent will be left with injury to their brain’s white matter – an area that is critical for aiding connection and communication between various regions in the brain. The resulting spectrum of neurological deficits can have significant costs for the individual, their family and society. Although studies have demonstrated that white matter injuries due to CHD have many contributing factors, including abnormal blood flow to the fetal brain, many questions remain about the mechanisms that cause these injuries and the best interventions.

What’s new

A Children’s National Health System research team combed existing literature, reviewing studies from Children’s as well as other research groups, to develop an article detailing the current state of knowledge on CHD and white matter injury. The scientists write that advances in neuroimaging – including magnetic resonance imaging, magnetic resonance spectroscopy, Doppler ultrasound and diffusion tensor imaging – have provided a wealth of knowledge about brain development in patients who have CHD. Unfortunately, these techniques alone are unable to provide pivotal insights into how CHD affects cells and molecules in the brain. However, by integrating animal models with findings in human subjects and in postmortem human tissue, the scientists believe that it will be possible to find novel therapeutic targets and new standards of care to prevent developmental delay associated with cardiac abnormalities.

For example, using a porcine model, the Children’s team was able to define a strategy for white matter protection in congenital heart surgery through cellular and developmental analysis of different white matter regions. Another study from Children’s combined rodent hypoxia with a brain slice model to replicate the unique brain conditions in neonates with severe and complex congenital heart disease. This innovative animal model provided novel insights into the possible additive effect of preoperative hypoxia on brain insults due to cardiopulmonary bypass and deep hypothermic circulatory arrest.

The Children’s research team also recently published an additional review article describing the key windows of development during which the immature brain is most vulnerable to CHD-related injury.

Questions for future research

Q: Can we create an animal model that recapitulates the morphogenic and developmental aspects of CHD without directly affecting other organs or developmental processes?
Q: What are the prenatal and neonatal cellular responses to CHD in the developing brain?
Q: What are the molecular mechanisms underlying white matter immaturity and vulnerability to CHD, and how can we intervene?
Q: How can we accurately assess the dynamic neurological outcomes of CHD and/or corrective surgery in animal models?
Q: Prenatal or postnatal insults to the developing brain: which is most devastating in regards to developmental and behavioral disabilities?
Q: How can we best extrapolate from, and integrate, neuroimaging findings/correlations in human patients with cellular/molecular approaches in animal models?

Source: Reprinted from Trends in Neurosciences, Vol. 38/Ed. 6, Paul D. Morton, Nobuyuki Ishibashi, Richard A. Jonas and Vittorio Gallo, “Congenital cardiac anomalies and white matter injury,” pp. 353-363, Copyright 2015, with permission from Elsevier.

pregnancy

New Children’s National and Inova collaboration

pregnancy

A new research collaboration will streamline completion of retrospective and prospective research studies, shedding light on myriad conditions that complicate pregnancies.

A new three-year, multi-million dollar research and education collaboration in maternal, fetal and neonatal medicine aims to improve the health of pregnant women and their children. The partnership between Children’s National Health System and Inova will yield a major, nationally competitive research and academic program in these areas that will leverage the strengths of both health care facilities and enhance the quality of care available for these vulnerable populations.

The collaboration will streamline completion of retrospective and prospective research studies, shedding light on a number of conditions that complicate pregnancies. It is one of several alliances between the two institutions aimed at improving the health and well-being of children in Northern Virginia and throughout the region.

“The Washington/Northern Virginia region has long had the capability to support a major, nationally competitive research and academic program in maternal and fetal medicine,” says Adre du Plessis, M.B.Ch.B., Director of the Fetal Medicine Institute at Children’s National and a co-Principal Investigator for this partnership. “The Children’s National/Inova maternal-fetal-neonatal research education program will fill this critical void.

“This new partnership will help to establish a closer joint education program between the two centers, working with the OB/Gyn residents at Inova and ensuring their involvement in Children’s National educational programs and weekly fetal case review meetings,” Dr. du Plessis adds.

Larry Maxwell, M.D., Chairman of Obstetrics and Gynecology at Inova Fairfax Medical Campus and a co-Principal Investigator for the collaboration, further emphasizes that “Inova’s experience in caring for women and children — combined with genomics- and proteomics-based research — will synergize with Children National’s leadership in neonatal pediatrics, placental biology and fetal magnetic resonance imaging (MRI) to create an unprecedented research consortium. This will set the stage for developing clinically actionable interventions for mothers and babies in metropolitan District of Columbia.”

Children’s National, ranked No. 3 nationally in neonatology, has expertise in pediatric neurology, fetal and neonatal neurology, fetal and pediatric cardiology, infectious diseases, genetics, neurodevelopment and dozens of additional pediatric medical subspecialties. Its clinicians are national leaders in next-generation imaging techniques, such as MRI. Eighteen specialties and 50 consultants evaluate more than 700 cases per year through its Fetal Medicine Institute. In mid-2016, Children’s National created a Congenital Zika Virus Program to serve as a dedicated resource for referring clinicians and pregnant women. The hospital performs deliveries in very high-risk, complex situations, but does not offer a routine labor and delivery program.

Inova Fairfax Medical Campus is home to both Inova Women’s Hospital and Inova Children’s Hospital. Inova Women’s Hospital is the region’s most comprehensive and highest-volume women’s hospital — delivering more than 10,000 babies in 2016. Inova Children’s Hospital serves as Northern Virginia’s children’s hospital —providing expert care in pediatric and fetal cardiology, cardiac surgery, genetics, complex general surgery, neurology, neurosurgery and other medical and surgical specialties. Its 108-bed Level IV neonatal intensive care unit is one of the largest and most comprehensive in the nation. Inova’s Translational Medicine Institute includes a genomics lab, as well as a research Institute focused on studies designed to build genetic models that help answer questions about individual disease. Each of these specialties is integrated into the Inova Fetal Care Center — which serves as a connection point between Inova Women’s and Children’s Hospitals. The Inova Fetal Care Center provides complex care coordination for women expecting infants with congenital anomalies or with other fetal concerns. Because Inova Women’s Hospital and Inova Children’s Hospital are co-located, women are able to deliver their babies in the same building where their children will receive care.

The research collaboration will support research assistants; tissue technicians; a placental biologist; as well as support for biomedical engineering, fetal-neonatal imaging, telemedicine, regulatory affairs and database management. The joint research projects that will take place under its auspices include:

  • Fetal growth restriction (FGR), which occurs when the failing placenta cannot support the developing fetus adequately. FGR is a major cause of stillbirth and death, and newborns who survive face numerous risks for multiple types of ailments throughout their lives. A planned study will use quantitative MRI to identify signs of abnormal brain development in pregnancies complicated by FGR.
  • Placental abnormalities, including placenta accreta. A planned study will combine quantitative MRI studies on the placenta during the third trimester and other points in time with formal histopathology to identify MRI signals of placenta health and disease.
  • Microcephaly, a condition that is characterized by babies having a much smaller head size than expected due to such factors as interrupted brain development or brain damage during pregnancy. While the global Zika virus epidemic has heightened awareness of severe microcephaly cases, dozens of pregnancies in the region in recent years have been complicated by the birth defect for reasons other than Zika infection. A planned study will examine the interplay between MRI within the womb and head circumference and weight at birth to examine whether brain volume at birth correlates with the baby’s developmental outcomes.

Setting a baseline for healthy brain development

Catherine Limperopoulos, Ph.D., and colleagues performed the largest magnetic resonance imaging study of normal fetal brains in the second and third trimesters of pregnancy.

Starting as a speck barely visible to the naked eye and ending the in utero phase of its journey at an average weight of 7.5 pounds, the growth of the human fetus is one of the most amazing events in biology. Of all the organs, the fetal brain undergoes one of the most rapid growth trajectories, expanding over 40 weeks from zero to 100 billion neurons — about as many brain cells as there are stars in the Milky Way Galaxy.

This exponential growth is part of what gives humans our unique abilities to use language or have abstract thoughts, among many other cognitive skills. It also leaves the brain extremely vulnerable should disruptions occur during fetal development. Any veering off the developmental plan can lead to a cascade of results that have long-lasting repercussions. For example, studies have shown that placental insufficiency, or the inability of the placenta to supply the fetus with oxygen and nutrients in utero, is associated with attention deficit hyperactivity disorder, autism, and schizophrenia.

Recent research has identified differences in the brains of people with these disorders compared with those without. Despite the almost certain start of these conditions within the womb, they have remained impossible to diagnose until children begin to show clinical symptoms. If only researchers could spot the beginnings of these problems early in development, says Children’s National Health System researcher Catherine Limperopoulos, Ph.D., they might someday be able to develop interventions that could turn the fetal brain back toward a healthy developmental trajectory.

“Conventional tools like ultrasound and magnetic resonance imaging (MRI) can identify structural brain abnormalities connected to these problems, but by the time these differences become apparent, the damage already has been done,” Limperopoulos says. “Our goal is to be able to pick up very early deviations from normal in the high-risk pregnancy before an injury to the fetus might become permanent.”

Before scientists can recognize abnormal, she adds, they first need to understand what normal looks like.

In a new study published in Cerebral Cortex, Limperopoulos and colleagues begin to tackle this question through the largest MRI study of normal fetal brains in the second and third trimesters of pregnancy. While other studies have attempted to track normal fetal brain growth, that research has not involved nearly as many subjects and typically relied on data collected when fetuses were referred for MRIs for a suspected problem. When the suspected abnormality was ruled out by the scan, these “quasi-controls” were considered “normal” — even though they may be at risk for problems later in life, Limperopoulos explains.

By contrast, the study she led recruited 166 healthy pregnant women from nearby low-risk obstetrics practices. Each woman had an unremarkable singleton pregnancy and ended up having a normal full-term delivery, with no evidence of problems affecting either the mother or fetus over the course of 40 weeks.

At least one time between 18 and 39 gestational weeks, the fetuses carried by these women underwent an MRI scan of their brains. The research team developed complex algorithms to account for movement (since neither the mothers nor their fetuses were sedated during scans) and to convert the two-dimensional images into three dimensions. They used the information from these scans to measure the increasing volumes of the cerebellum, an area of the brain connected to motor control and known to mediate cognitive skills; as well as regions of the cerebrum, the bulk of the brain, that is pivotal for movement, sensory processing, olfaction, language, and learning and memory.

Their results in uncomplicated, full-term pregnancies show that over 21 weeks in the second half of pregnancy, the cerebellum undergoes an astounding 34-fold increase in size. In the cerebrum, the fetal white matter, which connects various brain regions, grows 22-fold. The cortical gray matter, key to many of cerebrum’s functions, grows 21-fold. And the deep subcortical structures (thalamus and basal ganglia), important for relaying sensory information and coordination of movement and behavior, grow 10-fold. Additional examination showed that the left hemisphere has a larger volume than the right hemisphere early in development, but sizes of the left and right brain halves were equal by birth.

By developing similar datasets on high-risk pregnancies or births—for example, those in which fetuses are diagnosed with a problem in utero, mothers experience a significant health problem during pregnancy, babies are born prematurely, or fetuses have a sibling diagnosed with a health problem with genetic risk, such as autism—Limperopoulos says that researchers might be able to spot differences during gestation and post-natal development that lead to conditions such as schizophrenia, attention deficit hyperactivity disorder and autism spectrum disorder.

Eventually, researchers may be able to develop fixes so that babies grow up without life-long developmental issues.

“Understanding ‘normal’ is really opening up opportunities for us to begin to precisely pinpoint when things start to veer off track,” Limperopolous says. “Once we do that, opportunities that have been inaccessible will start to present themselves.”

Altered blood flow may contribute to preemie brain injuries

A Children’s National research team for the first time mapped abnormalities in blood flow that may contribute to brain injury suffered by preterm infants.

Advanced noninvasive imaging permitted Children’s National Health System researchers to measure the lasting impact of abnormalities in blood flow on the immature brains of premature babies. Blood flow to the brain, or perfusion, has been studied previously to understand its role in other health conditions, but this is the first time a research team has mapped how these changes may contribute to brain injury suffered by babies born before 32 weeks’ gestation.

Preterm birth is a major risk factor for brain injury. The prospective study examined infants weighing less than 1,500 grams who were born prior to 32 gestational weeks.

Of 78 infants studied, 47 had structural brain injuries categorized as either mild or moderate to severe, and 31 had no brain injury. While global cerebral blood flow decreased with advancing postnatal age, the blood flow decreased more significantly among preterm infants with brain injury, says Eman S. Mahdi, M.D., M.B.Ch.B. Dr. Mahdi is a pediatric radiology fellow at Children’s National and lead author of the abstract.

“In addition to differences in global brain blood flow, we saw a marked decrease in regional blood flow to the thalamus and the pons, regions known to be metabolically active during this time,” Dr. Mahdi says. The thalamus helps to process information from the senses and relays it elsewhere within the brain. Located at the base of the brain, the pons is part of the central nervous system and also is a critical relay of information between the cerebrum and cerebellum. “These regional variations in blood flow reflect vulnerability of the cerebral-cerebellar circuitry,” she adds.

The Radiological Society of North America (RSNA) recognized Dr. Mahdi with its Trainee Research Prize. She presented the work, “Cerebral Perfusion Is Perturbed by Preterm Birth and Brain Injury,” during the RSNA Scientific Assembly and Annual Meeting, held from Nov. 27 to Dec. 2.

The findings point to the need for additional research to explore how cerebral blood flow trends evolve as preemies grow older and whether abnormal blood flow is linked to differences in health outcomes. In addition, the technique used by the research team, arterial spin labeling perfusion imaging – a type of magnetic resonance imaging – represents a useful and non-invasive technology for identifying early cerebral perfusion abnormalities in preterm infants, says Catherine Limperopoulos, Ph.D., director of the Developing Brain Research Laboratory at Children’s National and abstract senior author.

Thrasher Research Fund supports Zika virus neurologic outcomes study

The Thrasher Research Fund will fund a Children’s National project, “Neurologic Outcomes of Apparently Normal Newborns From Zika Virus-Positive Pregnancies,” as part of its Early Career Award Program, an initiative designed to support the successful training and mentoring of the next generation of pediatric researchers.

The project was submitted by Sarah B. Mulkey, M.D., Ph.D., a fetal-neonatal neurologist who is a member of the Congenital Zika Virus Program at Children’s National. During the award period, Dr. Mulkey will be mentored by Adre du Plessis, M.B.Ch.B., director of the Fetal Medicine Institute, and Roberta L. DeBiasi, M.D., M.S., chief of the Division of Pediatric Infectious Diseases. Drs. du Plessis and DeBiasi co-direct the multidisciplinary Zika program, one of the nation’s first.

In the award letter, the fund mentioned Children’s institutional support for Dr. Mulkey, as demonstrated by the mentors’ letter of support, as “an important consideration throughout the funding process.”

Doctors working together to find treatments for autoimmune encephalitis

Children’s and Regeneron partner in exome sequencing study

Children’s National, in partnership with the Regeneron Genetics Center (RGC, a subsidiary of Regeneron Pharmaceuticals, Inc.), has announced the launch of a major three-year research study that will examine the links between undiagnosed disease and an individual’s genetic profile.

The program, directed by Children’s National Geneticist Carlos Ferreira Lopez, M.D., and coordinated by Genetic Counselor Lindsay Kehoe, hopes to include as many as 3,000 patients in its initial year and even greater numbers in the following two years.

During the course of the study, RGC will conduct whole exome sequencing (WES) to examine the entire protein-coding DNA in a patient’s genome. Children’s National geneticists will analyze and screen for certain findings that are known to be potentially causative or diagnostic of disease. Children’s National scientists and providers will confirm preliminary research findings in a lab certified for Clinical Laboratory Improvement Amendments (CLIA), per federal standards for clinical testing, and refer any confirmatory CLIA-certified cases to appropriate clinicians at Children’s National for further care.

According to Marshall Summar, M.D., Chief of Genetics and Metabolism at Children’s National, the WES study could finally provide patients and their families with the medical answers they have been looking for, allowing for treatment appropriate to their specific genetic condition.

Because pediatric diseases can often elude diagnosis, they can pose a number of detrimental effects to patients and their families, including treatment delays, multiple time- and cost-intensive tests, and stress from lingering uncertainty regarding the illness. With this genomic data, Regeneron will be able to utilize findings to continue its efforts to improve drug development.

Since its inception in 2014, the RGC has strategically partnered with leading medical institutions to utilize human genetics data to speed the development and discovery of new and improved therapies for patients in need.