Fetal Medicine

Nobuyuki Ishibashi

Cortical dysmaturation in congenital heart disease

Nobuyuki Ishibashi

On Jan. 4, 2019, Nobuyuki Ishibashi, M.D., the director of the Cardiac Surgery Research Laboratory and an investigator with the Center for Neuroscience Research at Children’s National Health System, published a review in Trends in Neurosciences about the mechanisms of cortical dysmaturation, or disturbances in cortical development, that can occur in children born with congenital heart disease (CHD). By understanding the early-life impact and relationship between cardiac abnormalities and cortical neuronal development, Dr. Ishibashi and the study authors hope to influence strategies for neonatal neuroprotection, mitigating the risk for developmental delays among CHD patients.

Dr. Ishibashi answers questions about this review and CHD-neurodevelopmental research:

  1. Tell us more about your research. Why did you choose to study these interactions in this patient population?

My research focuses on studying how CHD and neonatal cardiac surgery affect the rapidly-developing brain. Many children with CHD, particularly the most complex anomalies, suffer from important behavioral anomalies and neurodevelopmental delays after cardiac surgery. As a surgeon scientist, I want to optimize treatment strategy and develop a new standard of care that will reduce neurodevelopmental impairment in our patients.

  1. How does this study fit into your larger body of work? What are a few take-home messages from this paper?

Our team and other laboratories have recently identified a persistent perinatal neurogenesis that targets the frontal cortex – the brain area responsible for higher-order cognitive functions. The main message from this article is that further understanding of the cellular and molecular mechanisms underlying cortical development and dysmaturation will likely help to identify novel strategies to treat and improve outcomes in our patients suffering from intellectual and behavioral disabilities.

  1. What do you want pediatricians and researchers to know about this study? Why is it important right now?

Although the hospital mortality risk is greatly reduced, children with complex CHD frequently display subsequent neurological disabilities affecting intellectual function, memory, executive function, speech and language, gross and fine motor skills and visuospatial functions. In addition to the impact of the neurological morbidity on the patients themselves, the toll on families and society is immense. Therefore it is crucial to determine the causes of altered brain maturation in CHD.

  1. How do you envision this research influencing future studies and pediatric health outcomes? As a researcher, how will you proceed?

In this article we placed special emphasis on the need for well-designed preclinical studies to define disturbances in cortical neurogenesis due to perinatal brain injury. I believe that further study of the impact of hypoxemia on brain development is of broad relevance — not just for children with congenital heart disease, but for other populations where intellectual and behavioral dysfunctions are a source of chronic morbidity, such as survivors of premature birth.

  1. What discoveries do you envision being at the forefront of this field?

One of the important questions is: During which developmental period, prenatal or postnatal, is the brain most sensitive to developmental and behavioral disabilities associated with hypoxemia? Future experimental models will help us study key effects of congenital cortical development anomalies on brain development in children with CHD.

  1. What impact could this research make? What’s the most striking finding and how do you think it will influence the field?

Although cortical neurogenesis at fetal and adult stages has been widely studied, the development of the human frontal cortex during the perinatal period has only recently received greater attention as a result of new identification of ongoing postnatal neurogenesis in the region responsible for important intellectual and behavioral functions. Children’s National is very excited with the discoveries because it has opened new opportunities that may lead to regeneration and repair of the dysmature cortex. If researchers identify ways to restore endogenous neurogenic abilities after birth, the risk of neurodevelopment disabilities and limitations could be greatly reduced.

  1. Is there anything else you would like to add that we didn’t ask you about? What excites you about this research?

In this article we highlight an urgent need to create a truly translational area of research in CHD-induced brain injury through further exploration and integration of preclinical models. I’m very excited about the highly productive partnerships we developed within the Center for Neuroscience Research at Children’s National, led by an internationally-renowned developmental neuroscientist, Vittorio Gallo, Ph.D., who is a co-senior author of this article. Because of our collaboration, my team has successfully utilized sophisticated and cutting-edge neuroscience techniques to study brain development in children born with CHD. To determine the causes of altered brain maturation in congenital heart disease and ultimately improve neurological function, we believe that a strong unity between cardiovascular and neuroscience research must be established.

Additional study authors include Camille Leonetti, Ph.D., a postdoctoral research fellow with the Center for Neuroscience Research and Children’s National Heart Institute, and Stephen Back, M.D., Ph.D., a professor of pediatrics at Oregon Health and Science University.

The research was supported by multiple grants and awards from the National Institutes of Health, inclusive of the National Heart Lung and Blood Institute (RO1HL139712), the National Institute of Neurological Disorders and Stroke (1RO1NS054044, R37NS045737, R37NS109478), the National Institute on Aging (1RO1AG031892-01) and the National Institute of Child Health and Human Development (U54HD090257).

Additional support for this review was awarded by the American Heart Association (17GRNT33370058) and the District of Columbia Intellectual and Developmental Disabilities Research Center, which is supported through the Eunice Kennedy Shriver National Institute of Child Health and Human Development program grant 1U54HD090257.

AlgometRX

Breakthrough device objectively measures pain type, intensity and drug effects

AlgometRX

Clinical Research Assistant Kevin Jackson uses AlgometRx Platform Technology on Sarah Taylor’s eyes to measure her degree of pain. Children’s National Medical Center is testing an experimental device that aims to measure pain according to how pupils react to certain stimuli. (AP Photo/Manuel Balce Ceneta)

Pediatric anesthesiologist Julia C. Finkel, M.D., of Children’s National Health System, gazed into the eyes of a newborn patient determined to find a better way to measure the effectiveness of pain treatment on one so tiny and unable to verbalize. Then she realized the answer was staring back at her.

Armed with the knowledge that pain and analgesic drugs produce an involuntary response from the pupil, Dr. Finkel developed AlgometRx, a first-of-its-kind handheld device that measures a patient’s pupillary response and, using proprietary algorithms, provides a diagnostic measurement of pain intensity, pain type and, after treatment is administered, monitors efficacy. Her initial goal was to improve the care of premature infants. She now has a device that can be used with children of any age and adults.

“Pain is very complex and it is currently the only vital sign that is not objectively measured,” says Dr. Finkel, who has more than 25 years of experience as a pain specialist. “The systematic problem we are facing today is that healthcare providers prescribe pain medicine based on subjective self-reporting, which can often be inaccurate, rather than based on an objective measure of pain type and intensity.” To illustrate her point, Dr. Finkel continues, “A clinician would never prescribe blood pressure medicine without first taking a patient’s blood pressure.”

The current standard of care for measuring pain is the 0-to-10 pain scale, which is based on subjective, observational and self-reporting techniques. Patients indicate their level of pain, with zero being no pain and ten being highest or most severe pain. This subjective system increases the likelihood of inaccuracy, with the problem being most acute with pediatric and non-verbal patients. Moreover, Dr. Finkel points out that subjective pain scores cannot be standardized, heightening the potential for misdiagnosis, over-treatment or under-treatment.

Dr. Finkel, who serves as director of Research and Development for Pain Medicine at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National, says that a key step in addressing the opioid crisis is providing physicians with objective, real-time data on a patient’s pain level and type, to safely prescribe the right drug and dosage or an alternate treatment.,

She notes that opioids are prescribed for patients who report high pain scores and are sometimes prescribed in cases where they are not appropriate. Dr. Finkel points to the example of sciatica, a neuropathic pain sensation felt in the lower back, legs and buttocks. Sciatica pain is carried by touch fibers that do not have opioid receptors, which makes opioids an inappropriate choice for treating that type of pain.

A pain biomarker could rapidly advance both clinical practice and pain research, Dr. Finkel adds. For clinicians, the power to identify the type and magnitude of a patient’s nociception (detection of pain stimuli) would provide a much-needed scientific foundation for approaching pain treatment. Nociception could be monitored through the course of treatment so that dosing is targeted and personalized to ensure patients receive adequate pain relief while reducing side effects.

“A validated measure to show whether or not an opioid is indicated for a given patient could ease the health care system’s transition from overreliance on opioids to a more comprehensive and less harmful approach to pain management,” says Dr. Finkel.

She also notes that objective pain measurement can provide much needed help in validating complementary approaches to pain management, such as acupuncture, physical therapy, virtual reality and other non-pharmacological interventions.

Dr. Finkel’s technology, called AlgometRx, has been selected by the U.S. Food and Drug Administration (FDA) to participate in its “Innovation Challenge: Devices to Prevent and Treat Opioid Use Disorder.” She is also the recipient of Small Business Innovation Research (SBIR) grant from the National Institute on Drug Abuse.

DNA moleucle

PAC1R mutation may be linked to severity of social deficits in autism

DNA moleucle

A mutation of the gene PAC1R may be linked to the severity of social deficits experienced by kids with autism spectrum disorder (ASD), finds a study from a multi-institutional research team led by Children’s National faculty. If the pilot findings are corroborated in larger, multi-center studies, the research published online Dec. 17, 2018, in Autism Research represents the first step toward identifying a potential novel biomarker to guide interventions and better predict outcomes for children with autism.

As many as 1 in 40 children are affected by ASD. Symptoms of the disorder – such as not making eye contact, not responding to one’s name when called, an inability to follow a conversation of more than one speaker or incessantly repeating certain words or phrases – usually crop up by the time a child turns 3.

The developmental disorder is believed to be linked, in part, to disrupted circuitry within the amygdala, a brain structure integral for processing social-emotional information. This study reveals that PAC1R is expressed during key periods of brain development when the amygdala – an almond-shaped cluster of neurons – develops and matures. A properly functioning amygdala, along with brain structures like the prefrontal cortex and cerebellum, are crucial to neurotypical social-emotional processing.

“Our study suggests that an individual with autism who is carrying a mutation in PAC1R may have a greater chance of more severe social problems and disrupted functional brain connectivity with the amygdala,” says Joshua G. Corbin, Ph.D., interim director of the Center for Neuroscience Research at Children’s National Health System and the study’s co-senior author. “Our study is one important step along the pathway to developing new biomarkers for autism spectrum disorder and, hopefully, predicting patients’ outcomes.”

The research team’s insights came through investigating multiple lines of evidence:

  • They looked at gene expression in the brains of an experimental model at days 13.5 and 18.5 of fetal development and day 7 of life, dates that correspond with early, mid and late amygdala development. They confirmed that Pac1r is expressed in the experimental model at a critical time frame for brain development that coincides with the timing for altered brain trajectories with ASD.
  • They looked at gene expression in the human brain by mining publicly available genome-wide transcriptome data, plotting median PAC1R expression values for key brain regions. They found high levels of PAC1R expression at multiple ages with higher PAC1R expression in male brains during the fetal period and higher PAC1R expression in female brains during childhood and early adulthood.
  • One hundred twenty-nine patients with ASD aged 6 to 14 were recruited for behavioral assessment. Of the 48 patients who also participated in neuroimaging, 20 were able to stay awake for five minutes without too much movement as the resting state functional magnetic resonance images were captured. Children who were carriers of the high-risk genotype had higher resting-state connectivity between the amygdala and right posterior temporal gyrus. Connectivity alterations in a region of the brain involved in processing visual motion may influence how kids with ASD perceive socially meaningful information, the authors write.
  • Each child also submitted a saliva sample for DNA genotyping. Previously published research finds that a G to C single nucleotide polymorphism, a single swap in the nucleotides that make up DNA, in PAC1R is associated with higher risk for post traumatic stress disorder in girls. In this behavioral assessment, the research team found children with autism who carried the homozygous CC genotype had higher scores as measured through a validated tool, meaning they had greater social deficits than kids with the heterozygous genotype.

All told, the project is the fruit of six years of painstaking research and data collection, say the researchers. That includes banking patients’ saliva samples collected during clinical visits for future retrospective analyses to determine which genetic mutations were correlated with behavioral and functional brain deficits, Corbin adds.

Lauren Kenworthy, who directs our Center for Autism Spectrum Disorders, and I have been talking over the years about how we could bring our programs together. We homed in on this project to look at about a dozen genes to assess correlations and brought in experts from genetics and genomics at Children’s National to sequence genes of interest,” he adds. “Linking the bench to bedside is especially difficult in neuroscience. It takes a huge amount of effort and dozens of discussions, and it’s very rare. It’s an exemplar of what we strive for.”

In addition to Corbin, study co-authors include Lead Author Meredith Goodrich and Maria Jesus Herrero, post-doctoral fellow, Children’s Center for Neuroscience Research; Anna Chelsea Armour and co-Senior Author Lauren Kenworthy, Ph.D., Children’s Center for Autism Spectrum Disorders; Karuna Panchapakesan, Joseph Devaney and Susan Knoblach, Ph.D., Children’s Center for Genetic Medicine Research; Xiaozhen You and Chandan J. Vaidya, Georgetown University; and Catherine A.W. Sullivan and Abha R. Gupta, Yale School of Medicine.

Financial support for the research described in this report was provided by DC-IDDRC under awards HD040677-07 and 1U54HD090257, the Clinical and Translational Science Institute at Children’s National, The Isidore and Bertha Gudelsky Family Foundation and the National Institutes of Health under awards MH083053-01A2 and MH084961.

pregnant woman holding eggs

How does diet during pregnancy impact allergies in offspring?

pregnant woman holding eggs

A small percentage of women said they consumed fewer allergens during pregnancy to stave off food allergies in their newborns, according to preliminary research Karen Robbins, M.D., presented during the American College of Asthma Allergy and Immunology 2018 Annual Scientific Meeting.

Pregnant women routinely swear off alcohol and tobacco to boost their chances of having a healthy baby. What about common food allergens like nuts and milk?

There are scant data that describe how often pregnant women deliberately stop eating a specific food item in order to prevent future food allergies in their newborns. As a first step toward addressing this data gap, a research team led by Karen Robbins, M.D., an allergist at Children’s National Health System, pored through a longitudinal study conducted by the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention.

About 4,900 pregnant women completed the Infant Feeding Practices Study II prenatal questionnaire from May 2005 to June 2007. The study tracked 2,000 pregnant women from the third trimester of pregnancy and their infants through the first year of life. A small percentage of women said they had consumed fewer allergens during pregnancy to stave off food allergies in their newborns, according to a poster Dr. Robbins presented during the American College of Asthma Allergy and Immunology 2018 Annual Scientific Meeting. While their numbers were small, most of these women reported giving up major allergens like nuts, milk or eggs during pregnancy, including:

  • 144 (2.9 percent) reported restricting their diet in some way to prevent future food allergies in their offspring
  • 84 women (1.7 percent) ate fewer nuts
  • 15 women (.3 percent) ate fewer eggs and
  • 2 women (.04 percent) ate/drank consumed less dairy/milk.

“At the time the survey was conducted, few pregnant women in this large data set said they gave up certain foods with the express aim of avoiding a food allergy in their babies,” Dr. Robbins says. “However, mothers who had an older child with a food allergy or who had food allergies themselves had significantly higher odds of trying this food avoidance strategy.”

Despite the diet changes, infants born to these expectant mothers were twice as likely to experience problems with food at age 4 months – though not at age 9 months or 12 months. And these infants were no more likely to be diagnosed with a food allergy.

According to the FDA, millions of Americans suffer a food allergy each year. Reactions can range from mild to life-threatening and can begin soon after eating a problematic food item or an ingredient from that food. Among the most common allergenic foods are milk, eggs, fish, shellfish, tree nuts, peanuts, wheat and soybeans.

“We really need to know more about how often targeted food avoidance occurs among U.S. pregnant women who have a family history of food allergies,” Dr. Robbins adds. “We hope to learn what factors into these women’s decision-making as well as why many of them settled on food avoidance as a potential strategy to try to prevent food allergy in their infants.”

American College of Asthma Allergy and Immunology 2018 Annual Scientific Meeting presentation

  • “Prenatal food allergen avoidance practices for food allergy prevention.”

Karen Robbins M.D., lead author; Ashley Ramos Ph.D., co-author; Marni Jacobs, Ph.D., co-author; Kate Balas BS, co-author; and Linda Herbert, Ph.D., director of Children’s Division of Allergy and Immunology’s psychosocial clinical program, and senior author.

Sarah Mulkey

MRI and ultrasound imaging detect the spectrum of Zika’s impact

Sarah Mulkey

“A combination of prenatal MRI and US was able to detect Zika-related brain abnormalities during pregnancy, giving families timely information to prepare for the potential complex care needs of these infants,” says Sarah B. Mulkey, M.D., Ph.D.

Worldwide, thousands of babies have been born to mothers who were infected during pregnancy with Zika, a virus associated with neurological deficits, impaired vision and neurodevelopmental disabilities, among other birth defects. These birth defects are sometimes severe, causing lifelong disability. But they’re also relatively rare compared with the overall rates of infection.

Predicting how many Zika-exposed babies would experience neurological birth defects has been challenging.

However, an international study led by Children’s faculty suggests that ultrasound (US) imaging performed during pregnancy and after childbirth revealed most Zika-related brain abnormalities experienced by infants exposed to the Zika virus during pregnancy, according to a prospective cohort study published online Nov. 26, 2018, in JAMA Pediatrics. Some Zika-exposed infants whose imaging had been normal during pregnancy had mild brain abnormalities detected by US and magnetic resonance imaging (MRI) after they were born.

“A combination of prenatal MRI and US was able to detect Zika-related brain abnormalities during pregnancy, giving families timely information to prepare for the potential complex care needs of these infants,” says Sarah B. Mulkey, M.D., Ph.D., a fetal-neonatal neurologist at Children’s National Health System and the study’s lead author. “In our study, we detected mild brain abnormalities on postnatal neuroimaging for babies whose imaging was normal during pregnancy. Therefore, it is important for clinicians to continue to monitor brain development for Zika-exposed infants after birth.”

As of Nov. 20 2018, nearly 2,500 pregnant women in the U.S. had laboratory confirmed Zika infection, and about 2,400 of them had given birth, according to the Centers for Disease Control and Prevention (CDC). While more than 100 U.S. infants were born with Zika-associated birth defects, the vast majority of Zika-exposed U.S. infants were apparently normal at birth. The sequential neuroimaging study Dr. Mulkey leads seeks to determine the spectrum of brain findings in infants exposed to Zika in the womb using both US and MRI before and after birth.

The international research team enrolled 82 women in the study from June 15, 2016, through June 27, 2017. All of the women had been exposed to Zika during pregnancy; all but one experienced clinical symptoms by a mean gestational age of 8.2 weeks. Eighty of those women lived in or near Barranquilla, Colombia, and were exposed to Zika there. Two U.S. study participants were exposed to the primarily mosquito-borne illness during travel to Zika hot zones.

All women received fetal MRIs and US during the second and/or third trimester of pregnancy. After their infants were born, the children received brain MRI and cranial US. Blood samples from both mothers and babies were tested for Zika using polymerase chain reaction and serology.

Fetal MRI was able to discern Zika-related brain damage as early as 18 weeks gestation and picked up significant fetal brain abnormalities not fully appreciated in US imaging. In one case, the US remained normal while fetal MRI alone detected brain abnormalities. Three fetuses (4 percent) had severe fetal brain abnormalities consistent with Zika infection, including:

Seventy-five infants were born at term. One pregnancy was terminated at 23 weeks gestation due to the gravity of the fetal brain abnormalities. One fetus with normal imaging died during pregnancy. One newborn who was born with significant fetal brain abnormalities died at age 3 days.

Cranial US and brain MRI was performed on the majority of infants whose prenatal imaging had been normal.  Seven of 53 (13 percent) Zika-exposed infants had mild brain abnormalities detected by MRI after birth. In contrast, postnatal cranial US was better at detecting changes of lenticulostriate vasculopathy, cysts within the brain’s choroid plexus (cells that produce cerebrospinal fluid), germinolytic/subependymal cysts and/or calcifications, which were seen in 21 of 57 (37 percent) infants.

“Sequential neuroimaging revealed that the majority of Zika-exposed fetuses had normal brain development. Tragically, in a small number of pregnancies, Zika-related brain abnormalities were quite severe,” Dr. Mulkey adds. “Our data support the CDC’s recommendation that cranial US be performed after Zika-exposed babies are born. In addition, there is clearly a need to follow these babies over time to gauge whether the brain anomalies we see in imaging affects language, motor and social skills.”

Companion editorial: Revealing the effects of Zika

In addition to Dr. Mulkey, study co-authors include Dorothy I. Bulas, M.D.Gilbert Vezina, M.D., Margarita Arroyave-Wessel, MPH,  Stephanie Russo, B.S, Youssef A. Kousa, D.O, Ph.D.Roberta L. DeBiasi, M.D., MS, Senior Author Adré J. du Plessis, M.B.Ch.B., MPH, all of Children’s National; Christopher Swisher, BS, Georgetown University and Caitlin Cristante, BS, Loyola University, both of  whose contributions included research performed at Children’s National; Yamil Fourzali, M.D., Armando Morales, M.D., both of Sabbag Radiologos; Liliana Encinales, M.D., Allied Research Society; Nelly Pacheco, Bacteriologa, Bio-Nep; Robert S. Lanciotti, Ph.D., Arbovirus Diseases Branch, Centers for Disease Control and Prevention; and Carlos Cure, M.D., BIOMELAB.

Research reported in this news release was supported by the IKARIA fund.

Natella Rakhamania

Natella Yurievna Rakhmanina named to regional HIV planning commission

Natella Rakhamania

Natella Yurievna Rakhmanina, M.D., Ph.D., FAAP, AAHIVS, director of Ryan White HIV Services at Children’s National Health System, was appointed a commissioner to the Washington, D.C., Regional Planning Commission on Health and HIV.

Dr. Rakhmanina will be among the District of Columbia board and commission appointees honored during a swearing-in ceremony on Sept. 17, 2018, at the Walter Washington Convention Center.

Looking back over the last decade, she says the District has made impressive progress in lowering the prevalence rate of human immunodeficiency virus (HIV), which in 2002 had 1,686 per 100,000 District residents diagnosed with AIDS.

“It was really high. I was stunned coming to clinic and seeing a large number of kids and adolescents in care and many suffering significant complications, as our treatment options were limited at the time,” she says.

Since that time, DC Health has made “incredible investments” and adopted innovative approaches, such as name-based reporting of HIV and a Red Carpet program, to ensure newly diagnosed people are quickly linked with care. As a proud partner of DC Health’s HIV/AIDS, Hepatitis, STD and TB Administration, Children’s National launched a campaign in 2009 to universally test adolescents for HIV in two pediatric emergency departments (ED), she says.

“All teenagers aged 13 and older who arrive for any medical diagnosis are offered an oral HIV test. Children’s National ED-based HIV screening program alone has tested 30,000 children at both of our emergency departments,” she says. “We’re still not at our goal. However, the prevalence of HIV had dropped to 1.9 percent in the latest department of health analysis. We are doing better. We have much fewer people dying from AIDS. We are diagnosing earlier.”

What’s more, trends in mother-to-child transmission, a major route of transmission for pediatric HIV, also have improved in D.C.

“In 2006, our maternal HIV transmission rates were among the highest in the nation. But, in 2013, 2014 and 2015 there were zero cases. We have seen some setbacks recently, however.  In 2016, there were three perinatally acquired cases and four in 2017, but these cases came out of the larger Metropolitan D.C. area,” she explains. “Every perinatally transmitted case for us is a red star. We work very closely with the regional departments of health. We really want to get back to zero cases of maternal transmission in the region.”

The regional planning commission meets several times per year to decide how to distribute federal funding in Washington and the Metropolitan D.C. area to support HIV prevention, diagnosis, treatment and care.

“My voice on the council is to make sure I speak up for services for mothers, children and adolescents,” Dr. Rakhmanina says. “The biggest challenge of HIV care remains treating children. There’s a good selection of medicines for adults, but not all are suited for kids. Young children in particular can’t be given one pill once a day. Really young children can’t swallow a pill. Using a liquid formulation, which kids prefer, may mean opening three different bottles twice daily and swallowing a liquid that often doesn’t taste good.”

Adolescents diagnosed with HIV also find medication adherence challenging, she says.

“At that age, they face a lot of challenges to self-acceptance and disease management, in part, because it’s not a physical disability. A young person with HIV may not feel anything,” she says. “They struggle with staying on daily medications. Many of them tell us they don’t want to think about HIV and face stigma.”

Another ongoing challenge is ensuring moms living with HIV remain on medicines after they’ve given birth.

“They’re tremendously committed to continuing treatment while pregnant: Treatment means their babies are born free of HIV,” she says. “That is a great success. Once the baby is born, many times the women bring their babies to be tested, but the woman’s own health becomes less of a priority. We see a drop in adherence once they have the baby.”

By serving on the commission, Dr. Rakhmanina aims to push to extend Children’s commitment to excellence beyond its walls.

Pregnant-Mom

Safeguarding fetal brain health in pregnancies complicated by CHD

Pregnant-Mom

During the last few weeks of pregnancy, certain regions of the fetal brain experience exponential growth but also are more vulnerable to injury during that high-growth period.

Yao Wu, Ph.D., a research postdoctoral fellow in the Developing Brain Research Laboratory at Children’s National Health System, has received a Thrasher Research Fund early career award to expand knowledge about regions of the fetal brain that are vulnerable to injury from congenital heart disease (CHD) during pregnancy.

CHD, the most common birth defect, can have lasting effects, including overall health issues; difficulty achieving milestones such as crawling, walking or running; and missed days at daycare or school, according to the Centers for Disease Control and Prevention. Brain injury is a major complication for infants born with CHD. Catherine Limperopoulos, Ph.D., director of Children’s brain imaging lab, was the first to provide in vivo evidence that fetal brain growth and metabolism in the third trimester of pregnancy is impaired within the womb.

“It remains unclear which specific regions of the fetal brain are more vulnerable to these insults in utero,” Limperopoulos says. “We first need to identify early brain abnormalities attributed to CHD and understand their impact on infants’ later behavioral and cognitive development in order to better counsel parents and effectively intervene during the prenatal period to safeguard brain health.”

During the last few weeks of pregnancy, certain regions of the fetal brain experience exponential growth but also are more vulnerable to injury during that high-growth period. The grant, $26,749 over two years, will underwrite “Brain Development in Fetuses With Congenital Heart Disease,” research that enables Wu to utilize quantitative, non-invasive magnetic resonance imaging (MRI) to compare fetal brain development in pregnancies complicated by CHD with brain development in healthy fetuses of the same gestational age.Wu will leverage quantitative, in vivo 3-D volumetric MRI to compare overall fetal and neonatal brain growth as well as growth in key regions including cortical grey matter, white matter, deep grey matter, lateral ventricles, external cerebrospinal fluid, cerebellum, brain stem, amygdala and the hippocampus.

The research is an offshoot of a prospective study funded by the National Institutes of Health that uses advanced imaging techniques to record brain growth in 50 fetuses in pregnancies complicated by CHD who need open heart surgery and 50 healthy fetuses. MRI studies are conducted during the second trimester (24 to 28 weeks gestational age), third trimester (33 to 37 weeks gestational age) and shortly after birth but before surgery. In addition, fetal and neonatal MRI measurements will be correlated with validated scales that measure infants’ and toddlers’ overall development, behavior and social/emotional maturity.

“I am humbled to be selected for this prestigious award,” Wu says. “The findings from our ongoing work could be instrumental in identifying strategies for clinicians and care teams managing high-risk pregnancies to optimize fetal brain development and infants’ overall quality of life.”

Dr.-Jonas.-WSPCHS

Snapshot: The Sixth Scientific Meeting of the World Society for Pediatric and Congenital Heart Surgery

Dr.-Jonas.-WSPCHS

Dr. Richard Jonas shows surgical advancements using 3D heart models, which participants could bring back to their host institutions.

On July 22, 2018, more than 700 cardiac specialists met in Orlando, Fla. for the Sixth Scientific Meeting of the World Society for Pediatric and Congenital Heart Surgery (WSPCHS 2018).

The five-day conference hosted a mix of specialists, ranging from cardiothoracic surgeons, cardiologists and cardiac intensivists, to anesthesiologists, physician assistants and nurse practitioners, representing 49 countries and six continents.

To advance the vision of WSPCHS – that every child born with a congenital heart defect should have access to appropriate medical and surgical care – the conference was divided into eight tracks: cardiac surgery, cardiology, anesthesia, critical care, nursing, perfusion, administration and training.

Richard Jonas, M.D., outgoing president of WSPCHS and the division chief of cardiac surgery at Children’s National Health System, provided the outgoing presidential address, delivered the keynote lecture on Transposition of the Great Arteries (TGA) and guided a surgical skills lab with printed 3-D heart models.

Other speakers from Children’s National include:

  • Gil Wernovsky, M.D., a cardiac critical care specialist, presented on the complex physiology of TGA, as well as long-term consequences in survivors of neonatal heart surgery, including TGA and single ventricle.
  • Mary Donofrio, M.D., a cardiologist and director of the Fetal Heart Program, presented “Prenatal Diagnosis: Improving Accuracy and Planning Delivery for babies with TGA,” “Systemic Venous Abnormalities in the Fetus,” “Intervention for Fetal Lesions Causing High Output Heart Failure” and “Fetal Cardiac Care – Can We Improve Outcomes by Altering the Natural History of Disease?”
  • Gerard Martin, M.D., a cardiologist and medical director of global services, presented “Is the Arterial Switch as Good as We Thought It Would Be?” and “Impact, MAPIT, NCPQIC – How and Why We Should All Embrace Quality Metrics.”
  • Pranava Sinha, M.D., a cardiac surgeon, presented the abstract “Cryopreserved Valved Femoral Vein Homografts for Right Ventricular Outflow Tract Reconstruction in Infants.”

Participants left with knowledge about how to diagnose and treat complex congenital heart disease, and an understanding of the long-term consequences of surgical management into adulthood. In addition, they received training regarding standardized practice models, new strategies in telemedicine and collaborative, multi-institutional research.

“It was an amazing experience for me to bring my expertise to a conference which historically concentrated on surgical and interventional care and long-term follow-up,” says Dr. Donofrio. “The collaboration between the fetal and postnatal care teams including surgeons, interventionalists and intensive care doctors enables new strategies to be developed to care for babies with CHD before birth. Our hope is that by intervening when possible in utero and by planning for specialized care in the delivery room, we can improve outcomes for our most complex patients”.

The Johns Hopkins University School of Medicine, Florida Board of Nursing, American Academy of Nurse Practitioners National Certification Program, American Nurses Credentialing Center and the American Board of Cardiovascular Perfusion provided continuing medical credits for eligible providers.

“I was so proud to be a member of the Children’s National team at this international conference,” notes Dr. Wernovsky. “We had to the opportunity to share our experience in fetal cardiology, outpatient cardiology, cardiac critical care, cardiac nursing and cardiac surgery with a worldwide audience, including surgical trainees, senior cardiovascular surgeons and the rest of the team members necessary to optimally care for babies and children with complex CHD. In addition, members of the nursing staff shared their research about advancements in the field. It was quite a success – both for our team and for all of the participants.”

Graph showing magnesium reduces arrhythmia risk

Magnesium helps prevent postsurgical arrhythmias in pediatric patients

Graph showing magnesium reduces arrhythmia risk

Magnesium (Mg) helps reduce arrhythmias, irregular heart rhythms, in adults. It also helps alleviate the symptoms of postoperative atrial fibrillation, or AFib, which can lead to blood clots, stroke and heart failure. Can it help prevent postsurgical arrhythmias in pediatric patients with congenital heart disease?

New research from Children’s National Health System finds a 25- or 50-mg dose of Mg used during congenital heart surgery (CHS) helps prevent arrhythmias, especially junctional ectopic tachycardia (JET) and atrial tachycardia (AT), common arrhythmias following CHS, according to a study published in the August 2018 edition of The Journal of Thoracic and Cardiovascular Surgery.

To reach this conclusion, the researchers separated 1,871 CHS patients from Children’s National into three groups: a control group of 750 patients who had surgery without Mg, a group of 338 patients receiving a 25-mg /kg dose of Mg during surgery and a group of 783 patients receiving a 50-mg/kg dose of Mg during surgery. The data looked at CHS cases over eight years, from 2005 to 2013, to determine if Mg administration during surgery alleviates postoperative arrhythmias and if the amount, measured by a 25- or 50-mg/kg dose, makes a difference.

“This study, the first conducted in pediatric patients, finds administering magnesium during congenital heart surgery reduces the likelihood of postsurgical arrhythmias,” says Charles Berul, M.D., a study author and the chief of cardiology at Children’s National. “We don’t detect a dose-dependent relationship, which means a small or larger amount of magnesium is equally effective at preventing arrhythmias following surgery.”

The researchers found that up to one-third of CHS patients experience postoperative arrhythmias, with JET and AT accounting for more than two-thirds of arrhythmias following CHS. They note that despite the administration of Mg during surgery, there continues to be a high incidence of postoperative arrhythmias – affecting 18 percent or about one in five CHS patients.

“We hope this study guides future research to see if adding new or additional agents to magnesium eliminates, or further reduces, postoperative arrhythmias,” notes Dr. Berul. “For now, we’re happy to find an algorithm to put into practice and to share with other medical centers, as a way to help pediatric patients recover from congenital heart surgery—stronger, faster and with a reduced risk of complications.”

The researchers note that postoperative arrhythmias impact the recovery period of CHS, increase the duration of intubation and CICU stay and prolong hospital stay.

Making the grade: Children’s National is nation’s Top 5 children’s hospital

Children’s National rose in rankings to become the nation’s Top 5 children’s hospital according to the 2018-19 Best Children’s Hospitals Honor Roll released June 26, 2018, by U.S. News & World Report. Additionally, for the second straight year, Children’s Neonatology division led by Billie Lou Short, M.D., ranked No. 1 among 50 neonatal intensive care units ranked across the nation.

Children’s National also ranked in the Top 10 in six additional services:

For the eighth year running, Children’s National ranked in all 10 specialty services, which underscores its unwavering commitment to excellence, continuous quality improvement and unmatched pediatric expertise throughout the organization.

“It’s a distinct honor for Children’s physicians, nurses and employees to be recognized as the nation’s Top 5 pediatric hospital. Children’s National provides the nation’s best care for kids and our dedicated physicians, neonatologists, surgeons, neuroscientists and other specialists, nurses and other clinical support teams are the reason why,” says Kurt Newman, M.D., Children’s President and CEO. “All of the Children’s staff is committed to ensuring that our kids and families enjoy the very best health outcomes today and for the rest of their lives.”

The excellence of Children’s care is made possible by our research insights and clinical innovations. In addition to being named to the U.S. News Honor Roll, a distinction awarded to just 10 children’s centers around the nation, Children’s National is a two-time Magnet® designated hospital for excellence in nursing and is a Leapfrog Group Top Hospital. Children’s ranks seventh among pediatric hospitals in funding from the National Institutes of Health, with a combined $40 million in direct and indirect funding, and transfers the latest research insights from the bench to patients’ bedsides.

“The 10 pediatric centers on this year’s Best Children’s Hospitals Honor Roll deliver exceptional care across a range of specialties and deserve to be highlighted,” says Ben Harder, chief of health analysis at U.S. News. “Day after day, these hospitals provide state-of-the-art medical expertise to children with complex conditions. Their U.S. News’ rankings reflect their commitment to providing high-quality care.”

The 12th annual rankings recognize the top 50 pediatric facilities across the U.S. in 10 pediatric specialties: cancer, cardiology and heart surgery, diabetes and endocrinology, gastroenterology and gastrointestinal surgery, neonatology, nephrology, neurology and neurosurgery, orthopedics, pulmonology and urology. Hospitals received points for being ranked in a specialty, and higher-ranking hospitals receive more points. The Best Children’s Hospitals Honor Roll recognizes the 10 hospitals that received the most points overall.

This year’s rankings will be published in the U.S. News & World Report’s “Best Hospitals 2019” guidebook, available for purchase in late September.

An-Massaro

Keeping an eye on autonomic function for infants with HIE

An-Massaro

“By including heart rate variability measurements and other markers of autonomic function in our current predictive armamentarium,” says An Massaro, M.D., “we may be able to offer new hope for infants with HIE.”

In about two to three in every 1,000 full-term births, babies develop a neurological condition called hypoxic ischemic encephalopathy (HIE) when their brains receive insufficient oxygen. HIE can be a devastating condition, leading to severe developmental or cognitive delays or motor impairments that become more evident as the child grows older. Despite improvements in care – including therapeutic hypothermia, a whole-body cooling method administered shortly after birth that can slow brain damage – about half of children with this condition die from neurological complications by age 2.

Finding ways to identify children with the most severe HIE could help researchers focus their efforts and provide even more intense neuroprotective care, explains An Massaro, M.D., a neonatologist at Children’s National Health System. But thus far, it’s been unclear which symptoms reflect the extent of HIE-induced brain damage.

That’s why Dr. Massaro and colleagues embarked on a study published in the May 2018 issue of Journal of Pediatrics. The team sought to determine whether dysfunction of the autonomic nervous system (ANS) – the auto-pilot part of the nervous system responsible for unconscious bodily functions, such as breathing and digestion – reflected in routine care events can be used as a marker for brain injury severity.

The researchers collected data from 25 infants who were treated for HIE with therapeutic hypothermia at Children’s National. Thanks to multi-modal monitoring, these babies’ medical records hold a treasure trove of information, explains Rathinaswamy B. Govindan, Ph.D., a staff scientist in Children’s Advanced Physiological Signals Processing Lab.

In addition to including continuous heart rate tracings and blood pressure readings that are standard for many infants in the neonatal intensive care unit (NICU), they also recorded cerebral near infrared spectroscopy, a monitor that measures brain tissue oxygen levels. The investigators performed detailed analyses to evaluate how these monitor readings change in response to a variety of routine care events, such as diaper changes, heel sticks, endotracheal tube manipulations and pupil examinations.

The researchers stratified these infants based on how dysfunctional their ANS behaved by using heart rate variability as a marker: The fewer natural fluctuations in heart rate, the more damaged their ANS was thought to be. And they also used non-invasive brain magnetic resonance imaging (MRI) to determine brain damage. They then compared this information with the babies’ physiological responses during each care event.

Their findings show that infants with impaired ANS, based on depressed heart rate variability before the care event, had significantly different responses to these care events compared with babies with intact ANS.

  • For stimulating interventions, such as diaper changes and heel sticks, both heart rate and blood pressure increased in babies with intact ANS but decreased in babies with impaired ones.
  • Shining a light in their pupils led to an expected decreased heart rate with stable blood pressure in ANS-intact infants, but in ANS-impaired infants, there was no responsive change in heart rate and, additionally, a decrease in blood pressure was observed.
  • Responses were similar between the two groups during breathing tube manipulations, except for a slight increase in heart rate a few minutes later in the ANS-impaired group.

These results, Govindan explains, suggest that a real-time, continuous way to assess ANS function may offer insights into the expected physiological response for a given infant during routine NICU care.

“This is exactly the type of additional information that intensivists need to pinpoint infants who may benefit from additional neuroprotective support,” he says. “Right now, it is standard practice to monitor brain activity continuously using electroencephalogram and to check the status of the brain using MRI to assess the response to therapeutic cooling. Neither of these assessments can be readily used by neonatologists at the bedside in real-time to make clinical decisions.”

Assessing ANS function in real-time can help guide neuroprotective care in high-risk newborns by providing insight into the evolving nature of brain damage in these infants, Dr. Massaro adds.

Beyond simply serving as a biomarker into brain injury, poor ANS function also could contribute to the development of secondary injury in newborns with HIE by stymieing the normal changes in heart rate and blood pressure that help oxygenate and heal injured brains. The researchers found that the cumulative duration of autonomic impairment was significantly correlated with the severity of brain injury visible by MRI in this group of infants.

“By including heart rate variability measurements and other markers of autonomic function in our current predictive armamentarium,” says Dr. Massaro, “we may be able to offer new hope for infants with HIE.”

In addition to Dr. Massaro, the Senior Author, study co-authors include Lead Author, Heather Campbell, M.D.; Rathinaswamy B. Govindan, Ph.D., Children’s Advanced Physiological Signals Processing Lab; Srinivas Kota, Ph.D.; Tareq Al-Shargabi, M.S.; Marina Metzler, B.S.; Nickie Andescavage, M.D., Children’s neonatalogist; Taeun Chang, M.D., Children’s neonatal and fetal neurologist; L. Gilbert Vezina, M.D., attending in Children’s Division of Diagnostic Imaging and Radiology; and Adré J. du Plessis, M.B.Ch.B., M.P.H., chief of Children’s Division of Fetal and Transitional Medicine.

This research was supported by the Clinical and Translational Science Institute at Children’s National under awards UL1TR000075 and 1KL2RR031987-01 and the Intellectual and Developmental Disabilities Research Consortium within the National Institutes of Health under award P30HD040677.

Laura Sanapo

Children’s fetal medicine fellow named ‘Outstanding graduate student’

Laura Sanapo

Laura Sanapo, M.D., M.S.H.S., told the graduating class that two guiding themes defined her experience as a GW student: diversity and momentum.

Laura Sanapo, M.D., M.S.H.S., a fetal medicine fellow at Children’s Fetal Medicine Institute, was named “Outstanding graduate student” at The George Washington University School of Medicine & Health Sciences (GWSMHS) and was among two student speakers to address fellow graduates during the ceremony held May 19, 2018.

Dr. Sanapo was selected from a competitive field of top-tier graduate students from an array of academic programs, says Samar A. Nasser, Ph.D., M.P.H., PA-C, director of Clinical and Translational Research and Clinical Health Sciences at GWSMHS, who nominated her for the award. “She is one of the brightest students I have encountered. Because of her exceptional background, I recruited Dr. Sanapo to become an adjunct professor in our Clinical and Translational Research program and I look forward to co-teaching a course with her this fall.”

“I am extremely humbled and honored by this recognition for my ongoing research,” Dr. Sanapo says. “It is a privilege to join the GW faculty and contribute to the growth of an outstanding academic team and diverse group of students. I feel energized by such a collegial and dynamic environment.”

She told the graduating class that two guiding themes defined her experience as a GW student: diversity and momentum. Diversity, she told the group “means the spark that generates new ideas and growth” and momentum is the feeling of being “propelled forward by being part of a university that feels like a lively workshop of ideas.”

Prior to joining Children’s National Health System in 2014, Dr. Sanapo served with distinction at the University of Maryland School of Medicine and Thomas Jefferson University School of Medicine, conducting original research and frequently publishing in peer-reviewed journals.

Under the mentorship of Adré J. du Plessis, M.B.Ch.B., M.P.H., chief of Children’s Division of Fetal and Transitional Medicine, Dr. Sanapo investigated the role of advanced ultrasound techniques in assessing fetal vasoreactivity in pregnancies complicated by such conditions as intrauterine growth restriction, Dr. Nasser wrote in the nomination letter. In that study, the research team is trying to better understand how a healthy fetus controls blood flow throughout the body, including to the lungs and brain.

In addition to evaluating and counseling in high-risk pregnancies complicated by complex fetal malformations, Dr. Sanapo performed research and clinical ultrasounds daily. What’s more, Dr. Sanapo often scheduled appointments after-hours for patients unable to complete ultrasounds during normal business hours and was an integral part of the team that counseled women through difficult pregnancies.

“‘These women are especially vulnerable and they deserve 100 percent of my time, knowledge, energy and empathy,’  ” Dr. Nasser recalls Dr. Sanapo explaining. “Laura often goes above and beyond her responsibilities as a fellow to assist these women in need.”

Dr. du Plessis notes that Dr. Sanapo has been a valued clinical leader at Children’s Fetal Medicine Institute, shepherding a multidisciplinary team that includes genetic counselors, specialists in maternal-fetal medicine, radiologists, pediatric neurologists and nurses.

“When Children’s National and Inova announced a three-year, $2.8 million research and education collaboration in maternal, fetal and neonatal medicine last January, Laura’s contributions were pivotal in ensuring the research collaboration’s early success,” Dr. du Plessis adds.

Anna Penn

Protecting the fetal brain from harm

Anna Penn

Ongoing placental dysfunction and allopregnanolone loss, not the increase that was expected due to stress, may alter cortical development in complicated pregnancies and put babies at risk, says Anna Penn, M.D., Ph.D.

Researchers long have known that allopregnanolone (ALLO), a derivative of the hormone progesterone, is produced in adults’ brains during times of acute stress and modulates how easily the brain’s neurons fire. ALLO also is produced in the placenta during fetal development, one of more than 200 different hormones that each uniquely contribute to fostering a smooth pregnancy and maintaining a fetus’ overall health. Although ALLO is thought to protect the developing brain in pregnancies complicated by conditions that might harm it, such as high blood pressure, how its levels evolve during pregnancy and in newborns shortly after birth has remained unknown.

Now, a new study presented during the Pediatric Academic Societies (PAS) 2018 annual meeting suggests that the placenta ramps up ALLO production over the second trimester, peaking just as fetuses approach full term.

To investigate this phenomenon, Anna Penn, M.D., Ph.D., a neonatologist/neuroscientist at Children’s National Health System, and colleagues created a designer experimental model to study how premature loss of ALLO alters orderly brain development. Knowing more about the interplay between ALLO and normal development of the cortex, the outer layer of the cerebrum, is a first step that could lead to strategies to rescue this vital brain region.

“The cortex is basically the brain’s command-and-control center for higher functions. In our experimental model, it develops from the middle of gestation through to the end of gestation. If ALLO levels are disrupted just as these cells are being born, neurons migrating to the cortex are altered and the developing neural network is compromised,” says Dr. Penn, senior author of the research presented at PAS 2018. “We’re concerned this same phenomenon occurs in human infants whose preterm birth disrupts their supply of this essential hormone.”

To better understand the human placental hormone pattern, the research team analyzed cord blood or serum samples collected within the first 36 hours of life for 61 preterm newborns born between 24 to 36 gestational weeks. They compared those preemie samples with samples drawn from 61 newborns carried to term who were matched by race, gender, size for gestational age, delivery method and maternal demographics.

They used liquid-chromatography-tandem mass spectrometry, a technique that can precisely analyze trace levels of compounds, to compare levels of 27 different steroids, including ALLO and its precursors as well as better-known adrenal gland hormones, such as cortisol and 17-Hydroxyprogesterone.

“Pregnancies complicated by hypertension tended to correlate with lower ALLO levels, though this finding did not reach statistical significance. This suggests that ongoing placental dysfunction and ALLO loss, not the increase that we expected to be caused by stress, may alter cortical development in these pregnancies and put babies at risk,” Dr. Penn adds. “In addition, having the largest neonatal sample set to date in which multiple steroid hormones have been measured can provide insight into the shifting hormone patterns that occur around 36 weeks gestation, just prior to term. Hopefully, restoring the normal hormonal milieu for preemies or other at-risk newborns will improve neurological outcomes in the future.”

In addition to Dr. Penn, study co-authors include Caitlin Drumm, MedStar Georgetown University Hospital; Sameer Desale, MedStar Health Research Institute; and Kathi Huddleston, Benjamin Solomon and John Niederhuber, Inova Translational Medicine Institute.

distressed woman holding baby

When depression lingers after the NICU

distressed woman holding baby

Roughly half a million babies end up in the neonatal intensive care unit (NICU) each year in the U.S., often sending their parents on a wild emotional rollercoaster. Like other new parents, many parents feel symptoms of depression when their child leaves the NICU. For the majority, these depressive symptoms lift over time. But for others, depression can persist, affecting their well-being and relationships, including those with their new babies.

Thus far, it’s been unclear which parents are at a higher risk for this lasting depression. However, a new study led by Children’s researchers and presented at the Pediatric Academic Societies 2018 annual meeting suggests that parents whose depression lingers six months after their child’s NICU discharge tend to share certain demographic characteristics: They’re younger, have less education and care for more than one child.

“Using a validated screening tool, we found that 40 percent of parents in our analyses were positive for depression at the time their newborn was discharged from the NICU,” says Karen Fratantoni, M.D., M.P.H., a Children’s pediatrician and the lead study author. “It’s reassuring that, for many parents, these depressive symptoms ease over time. However for a select group of parents, depression symptoms persisted six months after discharge. Our findings help to ensure that we target mental health screening and services to these more vulnerable parents,” Dr. Fratantoni adds.

The study is an offshoot from “Giving Parents Support (GPS) after NICU discharge,” a large, randomized clinical trial exploring whether providing peer-to-peer parental support after NICU discharge improves babies’ overall health as well as their parents’ mental health.

Mothers of preterm and full-term infants who are hospitalized in NICUs are at risk for peripartum mood disorders, including postpartum depression. The Children’s research team sought to determine how many parents of NICU graduates experience depression and which characteristics are shared by parents with elevated depression scores.

They included 125 parents who had enrolled in the GPS clinical trial in their exploratory analyses and assessed depressive symptoms using a 10-item, validated screening tool, the Center for Epidemiological Studies Depression Scale (CES-D). Eighty-four percent of the parents were women. Nearly 61 percent of their infants were male and were born at a median gestational age of 37.7 weeks and mean birth weight of 2,565 grams. The median length of time these newborns remained in the NICU was 18 days.

When the newborns were discharged, 50 parents (40 percent) had elevated CES-D scores. By six months after discharge, that number dropped to 17 parents (14 percent).Their mean age ranged from 26.5 to 30.6 years old.

“Parents of NICU graduates who are young, have less education and are caring for other children are at higher risk for persistent symptoms of depression,” says Dr. Fratantoni. “We know that peripartum mood disorders can persist for one year or more after childbirth so these findings will help us to better match mental health care services to parents who are most in need.”

An American College of Obstetricians and Gynecologists’ committee opinion issued May 2018 calls for all women to have contact with a maternal care provider within the first three weeks postpartum and to undergo a comprehensive postpartum visit no later than 12 weeks after birth that includes screening for postpartum depression and anxiety using a validated instrument.

Study co-authors include Lisa Tuchman, M.D., chief, Children’s Adolescent and Young Adult Medicine Division; Randi Streisand, Ph.D., Children’s interim chief of Psychology and Behavioral Health; Nicole S. Herrera; Katherine Kritikos and Lamia Soghier, M.D., Children’s neonatologist.

Preemie Baby

Brain food for preemies

Preemie Baby

Babies born prematurely – before 37 weeks of pregnancy – often have a lot of catching up to do. Not just in size. Preterm infants typically lag behind their term peers in a variety of areas as they grow up, including motor development, behavior and school performance.

New research suggests one way to combat this problem. The study, led by Children’s researchers and presented during the Pediatric Academic Societies 2018 annual meeting, suggests that the volume of carbohydrates, proteins, lipids and calories consumed by very vulnerable premature infants significantly contributes to increased brain volume and white matter development, even though additional research is needed to determine specific nutritional approaches that best support these infants’ developing brains.

During the final weeks of pregnancy, the fetal brain undergoes an unprecedented growth spurt, dramatically increasing in volume as well as structural complexity as the fetus approaches full term.

One in 10 infants born in the U.S. in 2016 was born before 37 weeks of gestation, according to the Centers for Disease Control and Prevention. Within this group, very low birthweight preemies are at significant risk for growth failure and neurocognitive impairment. Nutritional support in the neonatal intensive care unit (NICU) helps to encourage optimal brain development among preterm infants. However, their brain growth rates still lag behind those seen in full-term newborns.

“Few studies have investigated the impact of early macronutrient and caloric intake on microstructural brain development in vulnerable preterm infants,” says Katherine Ottolini, lead author of the Children’s-led study. “Advanced quantitative magnetic resonance imaging (MRI) techniques may help to fill that data gap in order to better direct targeted interventions to newborns who are most in need.”

The research team at Children’s National Health System enrolled 69 infants who were born younger than 32 gestational weeks and weighed less than 1,500 grams. The infants’ mean birth weight was 970 grams and their mean gestational age at birth was 27.6 weeks.

The newborns underwent MRI at their term-equivalent age, 40 weeks gestation. Parametric maps were generated for fractional anisotropy in regions of the cerebrum and cerebellum for diffusion tensor imaging analyses, which measures brain connectivity and white matter tract integrity. The research team also tracked nutritional data: Grams per kilogram of carbohydrates, proteins, lipids and overall caloric intake.

“We found a significantly negative association between fractional anisotropy and cumulative macronutrient/caloric intake,” says Catherine Limperopoulos, Ph.D., director of Children’s Developing Brain Research Laboratory and senior author of the research. “Curiously, we also find significantly negative association between macronutrient/caloric intake and regional brain volume in the cortical and deep gray matter, cerebellum and brainstem.”

Because the nutritional support does contribute to cerebral volumes and white matter microstructural development in very vulnerable newborns, Limperopoulos says the significant negative associations seen in this study may reflect the longer period of time these infants relied on nutritional support in the NICU.

In addition to Ottolini and Limperopoulos, study co-authors include Nickie Andescavage, M.D., Attending, Children’s Neonatal-Perinatal Medicine; and Kushal Kapse.

newborn in incubator

How EPO saves babies’ brains

newborn in incubator

Researchers have discovered that treating premature infants with erythropoietin can help protect and repair their vulnerable brains.

The drug erythropoietin (EPO) has a long history. First used more than three decades ago to treat anemia, it’s now a mainstay for treating several types of this blood-depleting disorder, including anemia caused by chronic kidney disease, myelodysplasia and cancer chemotherapy.

More recently, researchers discovered a new use for this old drug: Treating premature infants to protect and repair their vulnerable brains. However, how EPO accomplishes this feat has remained unknown. New genetic analyses presented at the Pediatric Academic Societies 2018 annual meeting that was conducted by a multi-institutional team that includes researchers from Children’s National show that this drug may work its neuroprotective magic by modifying genes essential for regulating growth and development of nervous tissue as well as genes that respond to inflammation and hypoxia.

“During the last trimester of pregnancy, the fetal brain undergoes tremendous growth. When infants are born weeks before their due dates, these newborns’ developing brains are vulnerable to many potential insults as they are supported in the neonatal intensive care unit during this critical time,” says An Massaro, M.D., an attending neonatologist at Children’s National Health System and lead author of the research. “EPO, a cytokine that protects and repairs neurons, is a very promising therapeutic approach to support the developing brains of extremely low gestational age neonates.”

The research team investigated whether micro-preemies treated with EPO had distinct DNA methylation profiles and related changes in expression of genes that regulate how the body responds to such environmental stressors as inflammation, hypoxia and oxidative stress.  They also investigated changes in genes involved in glial differentiation and myelination, production of an insulating layer essential for a properly functioning nervous system. The genetic analyses are an offshoot of a large, randomized clinical trial of EPO to treat preterm infants born between 24 and 27 gestational weeks.

The DNA of 18 newborns enrolled in the clinical trial was isolated from specimens drawn within 24 hours of birth and at day 14 of life. Eleven newborns were treated with EPO; a seven-infant control group received placebo.

DNA methylation and whole transcriptome analyses identified 240 candidate differentially methylated regions and more than 50 associated genes that were expressed differentially in infants treated with EPO compared with the control group. Gene ontology testing further narrowed the list to five candidate genes that are essential for normal neurodevelopment and for repairing brain injury:

“These findings suggest that EPO’s neuroprotective effect may be mediated by epigenetic regulation of genes involved in the development of the nervous system and that play pivotal roles in how the body responds to inflammation and hypoxia,” Dr. Massaro says.

In addition to Dr. Massaro, study co-authors include Theo K. Bammler, James W. MacDonald, biostatistician, Bryan Comstock, senior research scientist, and Sandra “Sunny” Juul, M.D., Ph.D., study principal investigator, all of University of Washington.

Dorothy Bulas

Dorothy Bulas, M.D., receives the Society for Pediatric Radiology’s highest honor

Dorothy Bulas

Dorothy Bulas, M.D. F.A.C.R., F.A.I.U.M., F.S.R.U., chief of diagnostic imaging and radiology in the Division of Diagnostic Imaging and Radiology at Children’s National Health System, is being recognized at the 2018 Society for Pediatric Radiology Annual Meeting with their most distinguished honor, the Gold Medal.

The Society of Pediatric Radiology (SPR) Gold Medal is awarded to pediatric radiologists who have contributed greatly to the SPR and their subspecialty of pediatric radiology as a scientist, teacher, personal mentor and leader.

Initially, Dr. Bulas completed her residency in pediatrics. During a pediatric radiology rotation at John Hopkins University, she realized how much she loved problem solving and using emerging imaging modalities and went on to complete her radiology residency at Albert Einstein Hospital. Soon after, Dr. Bulas moved to Washington, D.C. to complete a pediatric radiology fellowship at her professional home, Children’s National.

Since the completion of her fellowship, Dr. Bulas views her role in the advancement of fetal imaging as her most significant professional contribution. She has published 131 papers, one of her most recent as a co-author on “Neuroimaging findings in normocephalic infants with Zika virus” in Pediatric Neurology. Dr. Bulas is also a co-author of the textbook entitled Fundamental and Advanced Fetal Imaging and has authored 35 book chapters.

She has served as program director of the Radiology Fellowship Program at Children’s National since 2005 where she has impacted medical students, residents and fellows from the United States and abroad.

As a previous chair member for numerous organizations, Dr. Bulas currently co-chairs the American College of Radiology’s pediatric radiology education committee. She is a founding member of the Image Gently Alliance, where she chaired the outreach campaign to parents and wrote brochures, web material and articles. Dr. Bulas is also a founder of the World Federation of Pediatric Imaging.

Dr. Bulas was honored as an outstanding teacher with the Edward Singleton-Hooshang Taybi Award for Excellence in Education from the SPR and this past fall and as the Outstanding Educator in 2017 by the Radiological Society of North America.

Robin Steinhorn

Children’s National senior vice president elected to American Pediatric Society leadership

Robin Steinhorn

Robin Steinhorn, M.D., Senior Vice President of Center for Hospital-Based Specialties at Children’s National Health System, was elected by her peers to become vice president and president-elect of the American Pediatric Society (APS) beginning May 2018 at the annual Pediatric Societies Meeting in Toronto, Canada. Dr. Steinhorn will serve in this role for one year and will then become the Society’s president in May 2019 for a one-year term.

Dr. Steinhorn is a globally recognized physician-leader, researcher and clinician in the fields of neonatal perinatal medicine and fetal pulmonary development. She was elected to the APS Council in 2015 and currently holds a seat on the American Board of Pediatrics’ Board of Directors.

“Dr. Steinhorn has devoted her professional career to advancing the field of pediatrics through exemplary leadership in related societies, as well as editorial oversight of cutting-edge research,” says David Wessel, M.D., executive vice president and chief medical officer of Hospital and Specialty Services at Children’s National. “This elevated role with the APS will enable her to further share her expertise to benefit children on a national and international level.”

Dr. Steinhorn serves as associate editor of the Journal of Pediatrics and is also a contributing editor for NEJM Journal Watch’s Pediatric and Adolescent Medicine.  Additionally, she sits on the editorial boards of Pediatric Critical Care Medicine and Pulmonary Circulation. Dr. Steinhorn is an elected fellow of the American Heart Association and a member of both the Perinatal Research Society and the American Thorasic Society.

Founded in 1888, the American Pediatric Society is the oldest and most prestigious academic pediatric organization in North America. Members are elected to APS based on their accomplishments as academic leaders in pediatrics and goal to shape the future of academic pediatrics. Mark L. Batshaw, M.D., physician-in-chief and chief academic officer of Children’s National preceded Dr. Steinhorn as APS President from 2016-2017.

“This is a tremendous honor, and it is a special privilege to follow Dr. Batshaw’s sound leadership. I look forward to leveraging the collective leadership and research accomplishments by our members to improve the health of infants and children throughout the U.S.,” said Dr. Steinhorn.

Dr. Steinhorn joined Children’s National in 2015 after a successful tenure as professor and chair of the department of pediatrics at the University of California, Davis (UCD) School of Medicine and as physician-in-chief, UCD Children’s Hospital. Previously, she was vice chair of the department of pediatrics and chief of the division of neonatology at Northwestern University and the Ann & Robert H. Lurie Children’s Hospital of Chicago.

Dr. Steinhorn’s clinical and academic interests have focused primarily on fetal and neonatal pulmonary vascular development. Her translational work has spanned from in vitro studies, to experimental models and clinical trials. In addition to her own translational research program, she has participated in numerous multicenter trials that have helped define the clinical treatment of pulmonary hypertension during the neonatal period. Her clinical research work also has addressed other topics, such as harmonization of electronic health records for clinical research and telemedicine support of neonatal care in small rural hospitals.

Additionally, Dr. Steinhorn is particularly passionate about mentoring faculty and supporting the growth and career development of young neonatologists and scientists, with several having developed their own research laboratories and assumed division leadership positions. She was selected as a “Top Doctor” by Northern Virginia  Magazine in 2018.

Sudeepta Basu

GABA concentration in pre-term brain increases with gestational age

Sudeepta Basu

“A more complete understanding of the diagnostic and prognostic importance of GABA and glutamate in the preterm brain will help us to direct treatment strategies for the most vulnerable preterm infants at risk of brain injury,” says Sudeepta K. Basu, M.D.

The major neurotransmitters gamma-aminobutyric acid (GABA) and glutamate are pivotal to fetal and newborn brain development and influence evolution of brain injury and repair following preterm birth. Magnetic resonance spectroscopy (MRS) enables in vivo measurement of brain metabolites. However, GABA and glutamate are found in the developing brain in low concentrations, and their weak signal can be swamped by the stronger signal of more dominant metabolites.

A Children’s research team reports findings from a pilot study utilizing an innovative technique of MRS to reliably measure in vivo GABA in the developing preterm brain. The groundbreaking research done by the team that includes Principal Investigator Sudeepta K. Basu, M.D., neonatology attending at Children’s National Health System, is very unique and original since there are no existing data of in vivo GABA concentrations in the developing cerebellum. Under the mentorship of Catherine Limperopoulos, Ph.D., director of Children’s Developing Brain Research Laboratory, the team of multi-disciplinary specialists is pursuing cutting-edge technologies in advanced MRI neuroimaging to explore brain development and injury in preterm infants.

The research, presented at the Eastern Society for Pediatric Research (ESPR) annual meeting by Dr. Basu, was honored with the “2018 Meritorious Poster Award.” The research titled “Distinct temporal trends of GABA and glutamate in the cerebellum and frontal cortex of preterm infants” reports, for the first time, positive temporal trends in the specific regions of the developing brain intricately involved in cognitive and motor functions. This work lays the foundation for developing novel ways to diagnose, monitor and investigative brain protective therapies for vulnerable prematurely born infants.

The Children’s team performed non-sedated MRS in 44 preterm infants whose mean gestational age at birth was 26.5 weeks, placing voxels at the middle of the cerebellum and the right frontal cortex. GABA and GIx (glutamate combined with glutamine) were positively correlated with post-menstrual age in the frontal cortex, but not the cerebellum.  At the ESPR meeting, the team also presented for the first time that caffeine, a neuroprotective agent in preemies, leads to increased in vivo GABA concentration in the developing frontal cortex.

“Open questions include whether these findings reflect varying paces of maturation and vulnerability to injury among specific regions of the brain. Also, the relationship between clinical factors and medication exposure and changes in the concentration of these neurotransmitters may guide brain protective therapies in future,” Dr. Basu says. “A more complete understanding of the diagnostic and prognostic importance of GABA and glutamate in the preterm brain will help us to direct treatment strategies for the most vulnerable preterm infants at risk of brain injury.”

Children’s senior fellows from Division of Neonatology made four platform presentations during the ESPR conference:

  • “Caffeine increases GABA/Cr ratio in frontal cortex of preterm infants on spectroscopy.” Aditi Gupta; Sudeepta K. Basu, M.D.; Mariam Said, M.D.; Subechhya Pradhan, Linda White; Kushal Kapse; Jonathan Murnick, M.D., Ph.D.; Taeun Chang, M.D.; and Catherine Limperopoulos, Ph.D.
  • “Impact of early nutrition on microstructural brain development in VLBW Infants.” Katherine M. Ottolini, Nickie Andescavage, M.D.; Kushal Kapse; and Catherine Limperopoulos, Ph.D.
  • “Direct measurement of neonatal cardiac output utilizing the CO status monitor.” Simranjeet S. Sran, Mariam Said, M.D.; and Khodayar Rais-Bahrami, M.D.
  • “Cerebro-cerebellar diaschisis in preterm infants following unilateral cerebral parenchymal injury.” Huma Mirza, Yao Wu, Kushal Kapse, Jonathan Murnick, M.D., Ph.D.; Taeun Chang, M.D.; and Catherine Limperopoulos, Ph.D.
Vittorio Gallo

Perinatal brain injury headlines American Society for Neurochemistry

Vittorio Gallo

Dr. Gallo’s research could have major implications for overcoming the common behavioral and developmental challenges associated with premature birth.

Children’s National Chief Research Officer Vittorio Gallo, Ph.D., recently had the honor of presenting a presidential lecture at the 48th Annual Meeting of the American Society for Neurochemistry (ASN). The lecture focused on his lifelong investigations of the cellular and molecular mechanisms of white matter development and injury, including myelin and glial cells – which are involved in the brain’s response to injury.

Specifically, he outlined the underlying diffuse white matter injury observed in his lab’s pre-clinical model of perinatal hypoxia, and presented new, non-invasive interventions that promote functional recovery and attenuate developmental delay after perinatal injury in the model. Diffuse white matter injuries are the most frequently observed pattern of brain injury in contemporary cohorts of premature infants. Illuminating methods that might stimulate growth and repair of such injuries shows promise for potential noninvasive strategies that might mitigate the long-term behavioral abnormalities and developmental delay associated with premature birth.

Dr. Gallo’s work in developmental neuroscience has been seminal in deepening understanding of cerebral palsy and multiple sclerosis. During his tenure as center director, he transformed the Center for Neuroscience Research into one of the nation’s premier programs.

ASN gathers nearly 400 delegates from the neurochemistry sector each year, including bench and clinical scientists, principal investigators, graduate students and postdoctoral fellows all actively involved in research from North America and around the world.