Tag Archive for: pacemaker

2023 with a lightbulb

The best of 2023 from Innovation District

2023 with a lightbulbAdvanced MRI visualization techniques to follow blood flow in the hearts of cardiac patients. Gene therapy for pediatric patients with Duchenne muscular dystrophy. 3D-printed casts for treating clubfoot. These were among the most popular articles we published on Innovation District in 2023. Read on for our full list.

1. Advanced MRI hopes to improve outcomes for Fontan cardiac patients

Cardiac imaging specialists and cardiac surgeons at Children’s National Hospital are applying advanced magnetic resonance imaging visualization techniques to understand the intricacies of blood flow within the heart chambers of children with single ventricle heart defects like hypoplastic left heart syndrome. The data allows surgeons to make critical corrections to the atrioventricular valve before a child undergoes the single ventricle procedure known as the Fontan.
(3 min. read)

2. Children’s National gives first commercial dose of new FDA-approved gene therapy for Duchenne muscular dystrophy

Children’s National Hospital became the first pediatric hospital to administer a commercial dose of Elevidys (delandistrogene moxeparvovec-rokl), the first gene therapy for the treatment of pediatric patients with Duchenne muscular dystrophy (DMD). Elevidys is a one-time intravenous gene therapy that aims to delay or halt the progression of DMD by delivering a modified, functional version of dystrophin to muscle cells.
(2 min. read)

3. New model to treat Becker Muscular Dystrophy

Researchers at Children’s National Hospital developed a pre-clinical model to test drugs and therapies for Becker Muscular Dystrophy (BMD), a debilitating neuromuscular disease that is growing in numbers and lacks treatment options. The work provides scientists with a much-needed method to identify, develop and de-risk drugs for patients with BMD.
(2 min. read)

4. First infants in the U.S. with specially modified pacemakers show excellent early outcomes

In 2022, five newborns with life-threatening congenital heart disease affecting their heart rhythms were the first in the United States to receive a novel modified pacemaker generator to stabilize their heart rhythms within days of birth. Two of the five cases were cared for at Children’s National Hospital. In a follow-up article, the team at Children’s National shared that “early post-operative performance of this device has been excellent.”
(2 min. read)

5. AI: The “single greatest tool” for improving access to pediatric healthcare

Experts from the Food and Drug Administration, Pfizer, Oracle Health, NVIDIA, AWS Health and elsewhere came together to discuss how pediatric specialties can use AI to provide medical care to kids more efficiently, more quickly and more effectively at the inaugural symposium on AI in Pediatric Health and Rare Diseases, hosted by Children’s National Hospital and the Fralin Biomedical Research Institute at Virginia Tech.
(3 min. read)

6. AAP names Children’s National gun violence study one of the most influential articles ever published

The American Academy of Pediatrics (AAP) named a 2019 study led by clinician-researchers at Children’s National Hospital one of the 12 most influential Pediatric Emergency Medicine articles ever published in the journal Pediatrics. The findings showed that states with stricter gun laws and laws requiring universal background checks for gun purchases had lower firearm-related pediatric mortality rates but that more investigation was needed to better understand the impact of firearm legislation on pediatric mortality.
(2 min. read)

7. Why a colorectal transition program matters

Children’s National Hospital recently welcomed pediatric and adult colorectal surgeon Erin Teeple, M.D., to the Division of Colorectal and Pelvic Reconstruction. Dr. Teeple is the only person in the United States who is board-certified as both a pediatric surgeon and adult colorectal surgeon, uniquely positioning her to care for people with both acquired and congenital colorectal disease and help them transition from pediatric care to adult caregivers.
(3 min. read)

8. First-of-its-kind holistic program for managing pain in sickle cell disease

The sickle cell team at Children’s National Hospital received a grant from the Founders Auxiliary Board to launch a first-of-its-kind, personalized holistic transformative program for the management of pain in sickle cell disease. The clinic uses an inter-disciplinary approach of hematology, psychology, psychiatry, anesthesiology/pain medicine, acupuncture, mindfulness, relaxation and aromatherapy services.
(3 min read)

9. Recommendations for management of positive monosomy X on cell-free DNA screening

Non-invasive prenatal testing using cell-free DNA (cfDNA) is currently offered to all pregnant women regardless of the fetal risk. In a study published in the American Journal of Obstetrics and Gynecology, researchers from Children’s National Hospital provided context and expert recommendations for maternal and fetal evaluation and management when cfDNA screening is positive for monosomy X or Turner Syndrome.
(2 min. read)

10. Innovation in clubfoot management using 3D anatomical mapping

While clubfoot is relatively common and the treatment is highly successful, the weekly visits required for Ponseti casting can be a significant burden on families. Researchers at Children’s National Hospital are looking for a way to relieve that burden with a new study that could eliminate the weekly visits with a series of 3D-printed casts that families can switch out at home.
(1 min. read)

11. Gender Self-Report seeks to capture the gender spectrum for broad research applications

A new validated self-report tool provides researchers with a way to characterize the gender of research participants beyond their binary designated sex at birth. The multi-dimensional Gender Self-Report, developed using a community-driven approach and then scientifically validated, was outlined in a peer-reviewed article in the American Psychologist, a journal of the American Psychological Association.
(2 min. read)

12. Cardiovascular and bone diseases in chronic kidney disease

In a study published by Advances in Chronic Kidney Disease, a team at Children’s National Hospital reviewed cardiovascular and bone diseases in chronic kidney disease and end-stage kidney disease patients with a focus on pediatric issues and concerns.
(1 min. read)

chest x-ray showing placement of tiny pacemaker

First infants in the U.S. with specially modified pacemakers show excellent early outcomes

chest x-ray showing placement of tiny pacemaker

Chest/abdominal x-ray of neonate receiving a modified pediatric-sized implantable pulse generator, demonstrating epicardial suture-on bipolar lead and pulse generator in the upper abdominal pocket.

In 2022, five tiny, fragile newborns with life-threatening congenital heart disease affecting their heart rhythms were the first in the United States to receive a novel modified pacemaker generator to stabilize their heart rhythms within days of birth.

An article in the journal Heart Rhythm assesses the outcomes to date for the infants who received pacemakers that were modified to work better in the smallest children who need them. The authors, including first author Charles Berul, M.D., chief of Cardiology at Children’s National Hospital, share that after following for between 6 and 9 months, “early post-operative performance of this device has been excellent.”

The big picture

Even the tiniest pacemakers and defibrillators on the market today aren’t small enough for infants and young children with heart rhythm abnormalities. So, for several years, Dr. Berul and colleagues at several other institutions have collaborated to adapt existing pacemakers, including the Medtronic Micra leadless pacing system, for use in tiny, critically ill newborns.

The specially modified pediatric-sized implantable pulse generator, called the Pediatric IPG, includes a Medtronic Micra sub-assembly that connects to an epicardial lead. While this makes the leadless pacemaker into one that uses leads, the resulting IPG is significantly smaller than any commercially available pacemaker previously on the market in the U.S.

The five infants in this case profile each received the modified Pediatric IPG at four separate institutions, and each surgery to implant the device was performed by a different cardiac surgeon. Two of the five cases were cared for at Children’s National. Cardiac surgeons Can Yerebakan, M.D., Ph.D., and Manan Desai, M.D. each performed one procedure.

The Pediatric IPG was authorized for use by emergency use exemptions from the federal Food and Drug Administration and with review and approval by each hospital’s Institutional Review Board, based on successful laboratory and pre-clinical models with favorable, though limited, results.

The patient benefit

All five infants were diagnosed with congenital complete heart block and required urgent pacing immediately after birth. The authors write:

“Permanent pacing in adults and older children is a routine, relatively simple implantation procedure. In the smallest of children, however, the generator is typically placed in the abdomen and can still present challenges in tiny babies under 2.5kg due to its bulk and dimensions, with risks of wound dehiscence, generator erosion and other complications.”

The authors note that the smaller profile of the Pediatric IPG reduces and has the potential to eliminate some of these challenges.

What’s next: Better delivery

Innovating smaller devices, including adapting current technology like the Medtronic Micra for pediatric use, is a good start but won’t be enough to eliminate some of the challenges for these patients. When a newborn or young child needs any pacemaker or defibrillator, they face open chest surgery. Their arteries and veins are just too small for even the smallest size transvenous pacemaker catheter.

That’s why Dr. Berul and engineers in the Sheikh Zayed Institute for Pediatric Surgical Innovation are working on a first-of-its-kind minimally invasive pericardial access tool. The team hypothesizes that this tool will allow for pacing and defibrillation therapy to be delivered through a single small port inserted through the skin that is about the size of a drinking straw.

You can read the full article Creative Concepts: Tiny Pacemakers for Tiny Babies in the journal Heart Rhythm.

infographic explaining tiny pacemaker

PeriPath surgery

NIH awards $1.8 million to trial pacemaker delivery system for children

PeriPath pacemaker

The PeriPath access port makes it possible for pacing and defibrillating leads to be placed in the smallest children through holes the size of a straw.

A $1.8 million Small Business Innovation Research (SBIR) grant from the National Institutes of Health (NIH) is funding the first clinical trial of a novel device called PeriPath. The device makes it possible for pacing and defibrillating leads (or wires) to be placed in the smallest children through holes the size of a straw, eliminating thoracotomy or sternotomy procedures for children who are too small for transvenous implantation.

Even the tiniest pacemakers and defibrillators on the market today aren’t small enough for infants and young children with heart rhythm abnormalities. Innovating smaller devices, including adapting current technology like the Medtronic Micra for pediatric use, is a good start but won’t be enough to eliminate some of the challenges for these patients. When a newborn or young child needs any pacemaker or defibrillator, they face open chest surgery. Their arteries and veins are just too small for even the smallest size transvenous pacemaker catheter.

The research goal

Charles Berul, M.D., division chief of Cardiology and co-director of the Children’s National Heart Institute, partnered with engineers in the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital to develop and test a first-of-its-kind minimally invasive pericardial access tool. The tool allows doctors to place pacing and defibrillation leads to the epicardial surface of the heart under direct visualization from an endoscope.

The team hypothesizes that this tool will allow for pacing and defibrillation therapy to be delivered through a single small port inserted through the skin that is about the size of a drinking straw.

Why it matters: Less pain, shorter and fewer surgeries

If successful, the device will eliminate the need for open chest surgery in patients who aren’t candidates for transvenous placement. The ability to place these leads percutaneously should:

  • Reduce pain and infection risk.
  • Decrease procedure times.
  • Minimize surgery complications that arise from open surgery.
  • Improve better visualization for pericardial punctures.
  • Allow other novel therapies such as epicardial ablation or, in the future, even drug/gene delivery into the pericardial space.

Any implanted pacemaker or defibrillator must be replaced every 5-10 years. A young child in critical need of such devices could face surgeries 10 or more times to replace the device and/or leads.

Pre-clinical testing shows early data that this percutaneous approach is as safe and effective as an open surgical technique, although it remains in early-stage evaluation.

What’s next

The NIH SBIR funding will allow the research team to assess long-term safety and efficacy and commercialize the PeriPath tool. Next steps are to:

  • Refine the design of PeriPath for production manufacturing, integrate testing protocols into a Quality Management System and conduct a pilot verification build. Success is defined as manufacturing production devices that pass 510(k) verification and validation testing.
  • Demonstrate substantial equivalence to predicate trocars through performance and handling validation testing using PeriPath to implant an epicardial lead in a pediatric simulator. If successful, the team will demonstrate equivalence and obtain investigational device exception (IDE).
  • In the latter part of the plan, to perform a first in human feasibility clinical study using PeriPath to implant a commercial pacemaker lead with institutional review board (IRB) approval in infants at Children’s National.

Bottom line

Dr. Berul says, “This research could have a transformative impact on current clinical practice by converting an open surgical approach to a minimally invasive percutaneous procedure.”

He also notes that while the study design focuses on the unique needs of infants and children with congenital heart disease – who are the primary focus of the device – the results of the trial may benefit thousands of adult patients who need pacemakers or defibrillators but who are not candidates for the transvenous placement.

chest x-ray showing pacemaker

Medical device pitch competition focuses on pediatric electrophysiology devices for CHD

chest x-ray showing pacemaker

While the last decade brought great advances in technologies that improve the care of adult arrhythmias, pediatric patients have been left behind, with only five devices approved for use in children in the same period.

Congenital heart disease (CHD) affects six out of 1,000 babies born in the U.S. each year and is often complicated by arrhythmias, a condition where the heart beats too rapidly, too slowly or irregularly due to a misfiring of the body’s electrical impulses. While the last decade brought great advances in technologies that improve the care of adult arrhythmias, pediatric patients have been left behind, with only five devices approved for use in children in the same period. As a result, pediatric specialists are often using off-label or improvised devices to treat pediatric arrhythmias, including the smallest newborns.

Recognizing this unmet need, the National Capital Consortium for Pediatric Device Innovation (NCC-PDI), in collaboration with MedTech Innovator, is accepting applications through April 12, 2021, for its annual “Make Your Medical Device Pitch for Kids!” competition. This year’s competition focuses on innovations in pediatric devices that treat CHD, with an emphasis on electrophysiology devices such as pacemaker systems, ablation catheters, wearable monitoring devices and related technologies that address arrhythmias in children.

“NCC-PDI was created, with the support of the Food and Drug Administration (FDA), to seek out and address significant unmet needs in pediatric medical devices,” says Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI. “We have learned from the experts that pediatric-specific technologies for treating arrhythmias would be a game changer in the care of their patients, so we are focusing our competition and grant awards on this opportunity.”

Kolaleh-Eskandanian

“We have learned from the experts that pediatric-specific technologies for treating arrhythmias would be a game changer in the care of their patients, so we are focusing our competition and grant awards on this opportunity,” says Kolaleh Eskandanian, Ph.D., M.B.A., P.M.P., vice president and chief innovation officer at Children’s National Hospital and principal investigator of NCC-PDI.

Using a virtual format, semi-finalists chosen from all submissions will make their first pitch on May 12, 2021. Up to 10 finalists selected from this event earn participation in a special pediatric-focused track of the MedTech Innovator accelerator program, the largest medtech accelerator in the world, beginning in June 2021. These innovators then participate in the pediatric competition finals in September 2021 where judges will award up to $150,000 in FDA-sponsored grants to the devices selected as most impactful and commercially viable.

How significant is the need for pediatric devices to address arrhythmias? In a recent survey of members conducted by the Pediatric and Congenital Electrophysiology Society (PACES), the vast majority (96%) said they believe there is a deficiency in devices available to serve the needs of pediatric patients. Conducted with the U.S.FDA, the survey also asked respondents to identify the biggest unmet need, which physicians identified as cardiovascular implantable electronic devices that are smaller, have better battery life and have pediatric-specific algorithms. Specifically, a leadless pacemaker designed for pediatric care was consistently on the most-wanted list.

NCC-PDI is one of five members in the FDA’s Pediatric Device Consortia Grant Program created to support the development and commercialization of medical devices for children, which lags significantly behind the advancement of adult medical devices. NCC-PDI is led by the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children’s National Hospital and the A. James Clark School of Engineering at the University of Maryland with support from partners MedTech Innovator, BioHealth Innovation and design firm Archimedic.

Eskandanian says that enhancing access to resources for pediatric innovators is also one of the aims of the Children’s National Research & Innovation Campus, a first-of-its-kind focused on pediatric health care innovation, with the first phase currently open on the former Walter Reed Army Medical Center campus in Washington, D.C. With its proximity to federal research institutions and agencies, universities, academic research centers, as well as on-site incubator Johnson and Johnson Innovation – JLABS, the campus provides a rich ecosystem of public and private partners which, like the NCC-PDI network, will help bolster pediatric innovation and commercialization.

 

newborn in ICU

Cardiac technology advances show promise for kids but only if right-sized

newborn in ICU

“Smaller patients, and those with congenital heart disease, can benefit from minimally-invasive methods of delivering pacemakers and defibrillators without the need for open-chest surgery,” says Charles Berul, M.D.

How to address the growing need for child-sized pacemakers and defibrillators, and finding better surgical techniques to place them, is the topic of an invited session called The Future is Now (or Coming Soon): Updates on New Technologies in Congenital Heart Care at the 2020 American Heart Association Scientific Sessions.

“Smaller patients, and those with congenital heart disease, can benefit from minimally-invasive methods of delivering pacemakers and defibrillators without the need for open-chest surgery,” says Charles Berul, M.D., co-director of the Children’s National Heart Institute and chief of Cardiology at Children’s National Hospital, who presented at the session.

“This unmet need can only be met by innovative pediatric research, geared towards miniaturization technologies for use in the smallest of children,” he says.

His presentation focused on the devices and approaches that have caught the attention of pediatric cardiology, such as pacemakers and subcutaneous defibrillators designed without lead wires, as well as less-invasive surgical approaches that may reduce recovery time for children with congenital heart disease who require these assist devices.

Using them in kids comes with added challenges, however. Often pediatric cardiologists have to be creative in how to make them work for smaller patients, Dr. Berul notes. This reiterates the important point that simply applying an adult technology to a child isn’t the right approach. The subcutaneous defibrillator, for example, is still pretty large for a child’s body. Some studies also show these devices may not be as accurate in children as in adults.

Investigators in the Sheikh Zayed Institute working together with the cardiologists at Children’s National Hospital are focused on product development and commercialization of tools and techniques to allow percutaneous minimally-invasive placement of devices, taking advantage of the newest devices and surgical techniques as they develop.

In his presentation, Dr. Berul stressed that as the technology for adults advances, it creates an opportunity for pediatric cardiology, but only if the devices, and the techniques to place them, are specifically redesigned for pediatric application.

American Heart Association Scientific Sessions 2020
The Future is Now (or Coming Soon): Updates on New Technologies in Congenital Heart Care – On Demand Session
CH.CVS.715
9:00am – 10:00am
Fri, Nov 13  (CST)

Rohan Kumthekar and Charles Berul

Rohan Kumthekar wins AAP’s Cardiology Research Fellowship Award

Rohan Kumthekar and Charles Berul

Dr. Kumthekar and Charles Berul, M.D., chief of Cardiology, discuss less invasive approaches for infants who require pacemaker and defibrillator placements.

Efforts to develop surgical approaches that would eliminate the need for complex, open surgery when placing pacemakers in tiny infants and young children has earned cardiology fellow Rohan Kumthekar, M.D., the American Academy of Pediatrics Cardiology Research Fellowship Award.

“Placing a pacemaker in a small child is different than operating on an adult, due to their small chest cavity and narrow blood vessels,” said Dr. Kumthekar in a 2018 interview about the proof of concept study for this work. “By eliminating the need to cut through the sternum or the ribs and fully open the chest to implant a pacemaker, the current model, we can cut down on surgical time and help alleviate pain.”

“We hope that this approach to lead placement eliminates the need for surgery in this group of pediatric patients,” he further explains in the 2019 award announcement. “This research could have a transformative impact in changing the current clinical standard for pacemaker and ICD implantation in pediatric patients by converting an open surgical approach to a minimally invasive procedure.”

The award, which is supported by the Children’s Heart Foundation, provides research support for an individual who has demonstrated aptitude for basic science or clinical science research during their pediatric cardiology fellowship.