Tag Archive for: metabolism

doctor listening to child's heartbeat

Earlier detection of cardiometabolic risk factors for kids may be possible through next generation biomarkers

doctor listening to child's heartbeat

The next generation of cardiometabolic biomarkers should pave the way for earlier detection of risk factors for conditions such as obesity, diabetes and heart disease in children.

American Heart Association statement finds potential future measures, reiterates importance of heart-healthy lifestyle from birth through adulthood.

The next generation of cardiometabolic biomarkers should pave the way for earlier detection of risk factors for conditions such as obesity, diabetes and heart disease in children, according to a new scientific statement from the American Heart Association published in the journal Circulation.

“The rising number of children with major risk factors for cardiometabolic conditions represents a potential tsunami of preventable disease for our healthcare system,” says the statement’s lead author Michele Mietus-Snyder, M.D., a preventive cardiologist and clinical research scientist at Children’s National Hospital. “But by the time a child is identified based on today’s clinical biomarkers, it’s often too late to reverse the disease trajectory.”

The big picture

The scientific statement included biomarkers that met three criteria:

  • Early and precise clinical detection of metabolic abnormalities before a child begins to show the current clinical signs such as high body mass index (BMI), blood pressure or cholesterol.
  • Mechanistic intervention targets providing immediate risk measures and giving clinicians new targets to personalize and optimize interventions.
  • Modifiable biomarkers that are capable of tracking progression toward or away from cardiometabolic health.

The statement’s identified biomarkers included measures of:

  • Epigenetic, or environmental, factors
  • Gut microbiome health
  • Small particle metabolites in the body
  • Different types of lipids and their impacts on cell membranes
  • Inflammation and inflammatory mediators

The authors proposed these biomarkers with the goal of “expanding awareness to include a whole new realm of biomarkers that precede the traditional risk factors we currently rely upon, such as BMI, blood pressure, cholesterol and blood sugar,” says Mietus-Snyder. “Ideally, these new biomarkers will be added to the array of measures used in clinical research to better assess their value for earlier identification and prevention of global patterns of cardiometabolic health and risk.”

Why it matters

The next generation cardiometabolic biomarkers outlined by the authors are all currently used in research studies and would need to be validated for clinical use. However, Mietus-Snyder notes that the data already collected from these biomarkers in research can make a difference in clinical practice by enhancing our understanding of the deep metabolic roots for children at risk.

Evidence reviewed in the statement shows the risk factors children are exposed to, even before birth, can set the stage for cardiovascular and metabolic health across the lifespan.

Interestingly, all the different factors reviewed have been found to alter the functioning of the mitochondria — the complex organelles responsible for producing the energy for the body that every cell and organ system in turn needs to function. Every class of biomarkers reviewed is also favorably influenced by heart-healthy nutrition, a simple but powerful tool known to improve mitochondrial function.

What’s next

Even as the new so-called ‘omic’ biomarkers reviewed in this statement are developed for clinical applications, there are things clinicians can do to optimize them and improve mitochondrial function, according to Mietus-Snyder.

Most important is to strengthen the collective dedication of care providers to removing the barriers that prevent people, especially expecting mothers and children, from living heart-healthy lifestyles.

We have long known lifestyle factors influence health. Even as complicated metabolic reasons for this are worked out, families can reset their metabolism by decreasing sedentary time and increasing activity, getting better and screen-free sleep, and eating more real foods, especially vegetables, fruits and whole grains, rich in fiber and nutrients, with fewer added sugars, chemicals, preservatives and trans fats. Clinicians can work with their patients to set goals in these areas.

“We know diet and lifestyle are effective to some degree for everyone but terribly underutilized. As clinicians, we have compelling reasons to re-dedicate ourselves to advocating for healthy lifestyle interventions with the families we serve and finding ways to help them implement them as early as possible. The evidence shows the sooner we can intervene for cardiometabolic health, the better.”

Andrea L. Gropman

Andrea L. Gropman, M.D., FAAP, FACMG, FANA, named as the Margaret O’Malley Professor of Genetic Medicine

Andrea L. GropmanChildren’s National Hospital named Andrea L. Gropman, M.D., FAAP, FACMG, FANA, as the Margaret O’Malley Professor of Genetic Medicine at Children’s National Hospital.

Dr. Gropman serves as Chief of the Division of Neurogenetics and Developmental Pediatrics at Children’s National Hospital. She is also a Professor of Pediatrics and Professor of Neurology at George Washington School of Medicine and Health Sciences.

About the award

Dr. Gropman joins a distinguished group of Children’s National physicians and scientists who hold an endowed chair. The Margaret O’Malley Professor of Genetic Medicine is one of 47 endowed chairs at Children’s National.

Professorships support groundbreaking work on behalf of children and their families and foster new discoveries and innovations in pediatric medicine. These appointments carry prestige and honor that reflect the recipient’s achievements and donor’s forethought to advance and sustain knowledge.

Dr. Gropman’s research focuses on neuroimaging, inborn errors of metabolism such as urea cycle disorders and mitochondrial disorders, and neurogenetics. She is the principal investigator of the Urea Cycle Disorders Consortium (UCDC) and the UCDC imaging consortium. She is the deputy clinical director of the Mito EpiGen Program.

Thomas and Mary Alice O’Malley, through their vision and generosity, are ensuring that Dr. Gropman and future holders of this professorship will launch bold, new initiatives to rapidly advance the field of pediatric genetic medicine, elevate our leadership and improve the lifetimes of children with genetic diseases.

About the donors

Tom and Mary Alice O’Malley have partnered with Children’s National to improve the lives of patients with urea cycles disorders for more than two decades. In 2003, their transformational philanthropy helped launch the Urea Cycle Disorders Consortium. This pioneering network grew to include 16-sites worldwide. It garnered 20 years of funding from the NIH’s Rare Diseases Clinical Research Network — the only center to sustain continuous funding over this period. This consortium’s research has yielded multiple effective treatment strategies, including government approval of three lifesaving therapies.

“The O’Malley family’s steadfast generosity helped us grow into the robust community of investigators and families we are today,” says Dr. Gropman. “They transformed care for UCD patients everywhere.”

Miriam Bornhorst

Miriam Bornhorst, M.D., receives DOD New Investigator Award

Miriam Bornhorst

Miriam Bornhorst, M.D., clinical director of the Gilbert Neurofibromatosis Institute at Children’s National Hospital, received the Department of Defense’s Neurofibromatosis Research Program New Investigator Award.

This award, which is funded by the U.S. Department of Defense, has granted $450,000 in funds which Dr. Bornhorst hopes to use towards a study for patients with Neurofibromatosis Type 1 (NF1).

“There is very little known about metabolism in NF1, but we know that abnormalities in metabolism can not only affect a person’s overall health, but may also influence how tumors develop and grow,” Dr. Bornhorst explained.

Patients with NF1 can have defining clinical features related to growth and energy metabolism, such as short stature, low weight and decreased bone mineral density, findings that are more prominent in patients with high plexiform neurofibroma (a nerve sheath tumor) burden. The mechanism for this metabolic phenotype and its association with plexiform neurofibromas is not currently understood.

Preliminary data and the work of others suggest that the MAPK pathway may play a role in metabolism and Mek-inhibitor (MEKi) treatment, which decreases activity of the MAPK pathway and promotes weight gain in patients with NF1. Dr. Bornhorst’s study will be the first to explore global metabolism in NF1, determine which metabolic pathways are most active in plexiform neurofibromas and define how metabolomic signatures change during MEKi treatment.

“These findings will improve management and may lead to novel treatment options for patients with NF1,” she said. “It is my hope that the grant funding received for my study will not only allow me to generate data that will answer questions about metabolism in NF1, but foster interest in this topic so there are more opportunities for researchers in the future.”

The NFRP was initiated in 1996 to provide support for research of exceptional scientific merit that promotes the understanding, diagnosis, and treatment of neurofibromatosis (NF) including NF type 1 (NF1) and type 2 (NF2) and schwannomatosis. Since it was first offered, 346 new Investigator Award applications have been received and only 79 have been recommended for funding – with Children’s National receiving one in the latest grant cycle. The Gilbert Family Neurofibromatosis Institute at Children’s National is one of the world’s largest programs and the longest standing program in the United States.

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

brain network illustration

$2.5M to protect the brain from metabolic insult

brain network illustration

The brain comprises only 2% of the body’s volume, but it uses more than 20% of its energy, which makes this organ particularly vulnerable to changes in metabolism.

More than 30 million Americans have diabetes, with the vast majority having Type 2 disease. Characterized by insulin resistance and persistently high blood sugar levels, poorly controlled Type 2 diabetes has a host of well-recognized complications: compared with the general population, a greatly increased risk of kidney disease, vision loss, heart attacks and strokes and lower limb amputations.

But more recently, says Nathan A. Smith, MS, Ph.D., a principal investigator in Children’s National Research Institute’s Center for Neuroscience Research, another consequence has become increasingly apparent. With increasing insulin resistance comes cognitive damage, a factor that contributes significantly to dementia diagnoses as patients age.

The brain comprises only 2% of the body’s volume, but it uses more than 20% of its energy, Smith explains – which makes this organ particularly vulnerable to changes in metabolism. Type 2 diabetes and even prediabetic changes in glucose metabolism inflict damage upon this organ in mechanisms with dangerous synergy, he adds. Insulin resistance itself stresses brain cells, slowly depriving them of fuel. As blood sugar rises, it also increases inflammation and blocks nitric oxide, which together narrow the brain’s blood vessels while also increasing blood viscosity.

When the brain’s neurons slowly starve, they become increasingly inefficient at doing their job, eventually succumbing to this deprivation. These hits don’t just affect individual cells, Smith adds. They also affect connectivity that spans across the brain, neural networks that are a major focus of his research.

While it’s well established that Type 2 diabetes significantly boosts the risk of cognitive decline, Smith says, it’s been unclear whether this process might be halted or even reversed. It’s this question that forms the basis of a collaborative Frontiers grant, $2.5 million from the National Science Foundation split between his laboratory; the lead institution, Stony Brook University; and Massachusetts General Hospital/Harvard Medical School.

Smith and colleagues at the three institutions are testing whether changing the brain’s fuel source from glucose to ketones – byproducts from fat metabolism – could potentially save neurons and neural networks over time. Ketones already have shown promise for decades in treating some types of epilepsy, a disease that sometimes stems from an imbalance in neuronal excitation and inhibition. When some patients start on a ketogenic diet – an extreme version of a popular fat-based diet – many can significantly decrease or even stop their seizures, bringing their misfiring brain cells back to health.

Principal Investigator Smith and his laboratory at the Children’s National Research Institute are using experimental models to test whether ketones could protect the brain against the ravages of insulin resistance. They’re looking specifically at interneurons, the inhibitory cells of the brain and the most energy demanding. The team is using a technique known as patch clamping to determine how either insulin resistance or insulin resistance in the presence of ketones affect these cells’ ability to fire.

They’re also looking at how calcium ions migrate in and out of the cells’ membranes, a necessary prerequisite for neurons’ electrical activity. Finally, they’re evaluating whether these potential changes to the cells’ electrophysiological properties in turn change how different parts of the brain communicate with each other, potentially restructuring the networks that are vital to every action this organ performs.

Colleagues at Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital and Harvard Medical School, led by Principal Investigator Eva-Maria Ratai, Ph.D.,  will perform parallel work in human subjects. They will use imaging to determine how these two fuel types, glucose or ketones, affect how the brain uses energy and produces the communication molecules known as neurotransmitters. They’re also investigating how these factors might affect the stability of neural networks using techniques that investigate the performance of these networks both while study subjects are at rest and performing a task.

Finally, colleagues at the Laufer Center for Physical and Quantitative Biology at Stony Brook University, led by Principal Investigator Lilianne R. Mujica-Parodi, Ph.D., will use results generated at the other two institutions to construct computational models that can accurately predict how the brain will behave under metabolic stress: how it copes when deprived of fuel and whether it might be able to retain healthy function when its cells receive ketones instead of glucose.

Collectively, Smith says, these results could help retain brain function even under glucose restraints. (For this, the research team owes a special thanks to Mujica-Parodi, who assembled the group to answer this important question, thus underscoring the importance of team science, he adds.)

“By supplying an alternate fuel source, we may eventually be able to preserve the brain even in the face of insulin resistance,” Smith says.