Posts

Cholesterol plaque in artery

Looking for atherosclerosis’ root cause

Cholesterol plaque in artery

A multi-institutional team led by research faculty at Children’s National in Washington, D.C., finds that extracellular vesicles derived from kids’ fat can play a pivotal role in ratcheting up risk for atherosclerotic cardiovascular disease well before any worrisome symptoms become visible.

According to the Centers for Disease Control and Prevention, about one in five U.S. kids aged 6 to 19 is obese, boosting their risk for a variety of other health problems now and later in life.

One of these is atherosclerosis, a term that translates literally as hardening of the arteries. Atherosclerosis causes blood vessels that carry oxygen-rich blood throughout the body to become inflamed. White blood cells called macrophages settle in the vessel wall, which becomes overloaded with cholesterol. A plaque forms that restricts blood flow. But it remains a mystery how fat cells residing in one place in the body can trigger mayhem in cells and tissues located far away.

Small, lipid-lined sacs called extracellular vesicles (EVs), released by cells into the bloodstream, are likely troublemakers since they enable intercellular communication. Now, a multi-institutional team led by research faculty at Children’s National in Washington, D.C., finds that EVs derived from kids’ fat can play a pivotal role in ratcheting up risk for atherosclerotic cardiovascular disease well before any worrisome symptoms become visible. What’s more, the team showed that EVs found in the body’s fat stores can disrupt disposal of cholesterol in a variety of kids, from lean to obese, the team reports online July 22, 2019, in the Journal of Translational Medicine.

“We found that seven specific small sequences of RNA (microRNA) carried within the extracellular vesicles from human fat tissue impaired the ability of white blood cells called macrophages to eliminate cholesterol,” says Robert J. Freishtat, M.D., MPH, senior scientist at the Center for Genetic Medicine Research at Children’s National and the study’s senior author. “Fat isn’t just tissue. It can be thought of as a metabolic organ capable of communicating with types of cells that predispose someone to develop atherosclerotic cardiovascular disease, the leading cause of death around the world.”

Research scientists and clinicians from Children’s National, the George Washington University, NYU Winthrop Hospital and the National Heart, Lung and Blood Institute collaborated to examine the relationship between the content of EVs and their effect on macrophage behavior. Their collaborative effort builds on previous research that found microRNA derived from fat cells becomes pathologically altered by obesity, a phenomenon reversed by weight-loss surgery.

Because heart disease can have its roots in adolescence, they enrolled 93 kids aged 12 to 19 with a range of body mass indices (BMIs), including the “lean” group, 15 youth whose BMI was lower than 22 and the “obese” group, 78 youths whose BMI was in the 99th percentile for their age. Their median age was 17. Seventy-one were young women. They collected visceral adipose tissue during abdominal surgeries and visited each other’s respective labs to perform the experiments.

“We were surprised to find that EVs could hobble the macrophage cholesterol outflow system in adolescents of any weight,” says Matthew D. Barberio, Ph.D., the study’s lead author, a former Children’s National scientist who now is an assistant professor at the George Washington University’s Milken Institute School of Public Health. “It’s still an open question whether young people who are healthy can tolerate obesity—or whether there are specific differences in fat tissue composition that up kids’ risk for heart disease.”

The team plans to build on the current findings to safeguard kids and adults against future cardiovascular risk.

“This study was a huge multi-disciplinary undertaking,” adds Allison B. Reiss, M.D., of NYU Winthrop Hospital and the study’s corresponding author. “Ultimately, we hope to learn which properties belonging to adipose tissue EVs make them friendly or unfriendly to the heart, and we hope that gaining that knowledge will help us decrease morbidity and mortality from heart disease across the lifespan.”

In addition to Dr. Freishtat, additional study co-authors include Samuel B. Epstein, Madeleine Goldberg, Sarah C. Ferrante, and Evan P. Nadler, M.D., director of the Bariatric Surgery Program, all of Children’s National’s Center for Genetic Medicine Research; Lead Author, Matthew D. Barberio, of Millken Institute School of Public Health at the George Washington University; Lora J. Kasselman, Heather A. Renna, Joshua DeLeon, Iryna Voloshyna, Ashley Barlev, Michael Salama and Allison B. Reiss, all of NYU Winthrop Hospital; and Martin P. Playford and Nehal Mehta, of the National Heart, Lung and Blood Institute.

Financial support for research described in this post was provided by the National Institutes of Health National Center for Advancing Translational Sciences under award number UL1TR000075, the National Heart, Lung and Blood Institute under award number Z1AHL-06193-4, the American Heart Association under award number 17POST33670787, the Clark Charitable Foundation, the Elizabeth Daniel Research Fund, and Robert Buescher.

heart and medical equiptment

How much do you know about congenital heart defects?


Relationship between sedentary time and youth cardiovascular health

Heart disease is the leading cause of death in the United States, yet for many individuals it is preventable through modifications in diet, physical activity, and sedentary time – all major risk factors. Jacob Hartz, M.D., M.P.H., a cardiology fellow at Children’s National Health System, presented findings from his research on youth cardiovascular health during the American Heart Association (AHA) Scientific Sessions, held November 12-16 in New Orleans. The AHA Scientific Sessions featured the latest developments in science and cardiovascular clinical practice, including all aspects of basic, clinical, population, and translational science. Dr. Hartz spoke on “The Relationship Between Clustering of Cardiovascular Health Behaviors and Physical Fitness Among U.S. Adolescents – Data from the National Health and Nutrition Examination Survey,” and shared how grouping children with risk factors into clusters enabled researchers to pinpoint sedentary time as the leading predictor of heart health.

Read more about Children’s National AHA Scientific Sessions speakers.

Link between population health and heart disease

Gerard Martin

Although clinical advances have improved treatments and mortality among patients with cardiovascular disease, heart disease remains the leading cause of death worldwide. Gerard Martin, M.D., cardiologist and medical director of Global Health at Children’s National and Chair of the American College of Cardiology’s Population Health Policy and Promotion Committee shares how cardiologists can improve outcomes by focusing on the link between population health and heart disease in a just-published article in Cardiology.

Read more.

Robert J. Freishtat

A game changer for detecting complications from obesity

Robert J. Freishtat

The work that Children’s National Health System physician-scientist Robert J. Freishtat, M.D., M.P.H., and colleagues are doing could soon be a game changer when it comes to early intervention and prevention of obesity-related illnesses.

They already knew there’s a direct relationship between the amount of visceral adipose, or belly fat, a person has and development of some of the most common and life-threatening complications of obesity, including cardiovascular disease and the insulin resistance that leads to diabetes. What remained unclear, until recently, were the precise mechanisms for how the increase in belly fat triggers the onset of additional disease.

Dr. Freishtat, senior author of “Adipocyte-Derived Exosomal miRNAs: A Novel Mechanism for Obesity-Related Disease,” published by Pediatric Research, studies the adipocytes, or fat cells, of visceral adipose in both lean and obese patients to understand exactly how these fat cells can and do wreak havoc — not just locally but throughout the body. Cells leverage exosomes to communicate among themselves, but in overweight patients those cellular communications can go awry.

“As the body’s visceral fat grows, somewhere on the path to obesity the fat cells change and begin to release different exosomes than lean adipose cells do. These new messages disrupt some important processes that eventually prevent the body from effectively dealing with sugar and cholesterol,” says Dr. Freishtat, chief of Emergency Medicine at Children’s National, and associate professor of Pediatrics, Emergency Medicine, and Integrative Systems Biology at the George Washington University.

Dr. Freishtat describes exosomes as “biological tweets”— short messages shed by all cells that allow for intercellular communication and alter gene expression. In the case of the adipocytes that exist in large quantities of visceral fat, these “tweets” actually cause the downregulation of proteins impacting two key signaling pathways — TGF-β and Wnt/β-catenin — associated with controlling chronic inflammation and fibrotic disease throughout the body. These signaling changes make morbidly obese patients more vulnerable to systemwide issues, such as cholesterol accumulation and changes to how the liver processes fat.

Details of the study

The study authors surgically collected fat tissue from lean and obese female patients aged 11 to 19 and used modified bead-based flow cytometry to separate, identify, and compare the exosomal RNA shed by the fat cells in both lean and obese samples. To confirm the unique impact of the obese adipose exosomes on gene expression, the research team then exposed lung cells in vivo to the exosomes shed by both lean and obese adipose. They measured the impact of exposure and uptake on a single receptor type — activin receptor type-2B — known to have a major influence on the TGF-β pathway. The exosomes from obese adipose caused the receptor to slow down, leading to significant changes in the function of the TGF-β pathway.

The team continues to explore how the exosomes shed from excess amounts of visceral adipose spread throughout the body and how the function of organs such as the liver, the heart, and the brain are impacted by the migrating fat cells.

A Look into the future

Successfully identifying and isolating these exosomes also has opened the door to developing a test to detect them, an idea that may permit even earlier intervention to delay or prevent the onset of obesity-related illnesses.

“It is entirely plausible, and is on its way to happening very soon, that someone could walk into their physician’s office for a routine physical and, via a urine test, find out that they are on the road to some dangerous additional side effects of significant weight gain,” says Dr. Freishtat. “That type of early detection could really be a game changer for the millions of Americans who are on track to developing heart, liver, and other diseases resulting from morbid obesity.”